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Coherence Bandwidth and Pulse Distortion
through Naturally Occurring and

Artificially M4odified Ionosphere

1. Introduction

A contract with the above title was awarded to the University of

Illinois to commence the investigations on July 16, 1978. This contract

has since been extended twice to July 15, 1982. Therefore, in this

final report we will summarize our work for a period of four years.

This project is concerned with the study of propagation of radio

signals through a perturbed ionosphere. These ionospheric perturbations

can be naturally occurring, probably caused by some plasma instability

mechanisms; they can also be man-made, for example, by high power

transmitters, chemical releases or nuclear detonations in the atmos-

phere. We are not concerned in this project with the exact physical

mechanisms that produce these perturbations although investigations

into these mechanisms are interesting research problems by themselves.

K What is concerned in this project are effects these ionospheric pertur-

bations may have on radio signals propagating through them. In general,

these perturbations are highly complicated and imprecisely known. We

must then use whatever information that is available to model these

perturbations either detern!inistically or stochastically. Such a

modeling effort will depend on the interplay of experimental observations

and theoretical suggestions and deductions. With accumulation of experi-

mental data the models can be made more accurate. Of course better

ionospheric models will enable us to simulate more closely the true

propagation conditions.



2. Summary of Problems Investigated and Results

4 The problems investigated under the support of this project can

be broadly classified into three areas: pro)pagation effects through

ionospheric bubbles, propagation effects thrc~ugh ionospheric rg-

larities and experimental observations of scintillation effects.

K These are described in the following.

2.1 Propagation Effects through Ionospheric Bubbles

One of the most intentely perturbed ionospheric regions by natural

events is the region above the magnetic equator. Various observations

have shown that large depletions in ionization, often called bubbles,

are possible. Inside these bubbles, the ionization structure is

extremely complex and have been variously described as Ionization

walls and protruding fingers. As far as their effects to radio propaga-

tion is concerned, the important realization is the fact that the

ionization gradients can be very steep, much steeper than expected

based on the usual random medium hypothesis. Because of this we

cannot use the random medium approach to wave propagation studies;

Instead we must first model this bubble medium deterministically and

then study the propagation effects through such a deterministic medium.

The complexity of the bubble structure renders any analytical approach

* hopeless and the only recourse is then to use a numerical approach.

Several problems have been investigated using this approach. We summarize

our results briefly below.

To start the investigation through an ionospheric bubble we need

to do two things: (1) A bu'' e model and (2) A numerical scheme in

solving the wave equatioa~. '.hese two things are done in a report



(see section 4, publication 7). The bubble model is constructed using

the in-situ data and numerical calculations based on plasma instabilities.

The wave equation is converted into a parabolic equation under forward

scatter approximation, which is then solved numerically by an implicit

method generalized from the Crank-Nicholson scheme. Some preliminary

results are also given in this report. These results obtained from

additional computations are presented in a paper (see section 4, publics-

tion 3). Among other effects, these numerical computations show that

the sharp wedgelike structures associate3 with bubbles may be responsible

to scintillation outbursts at GHz frequencies that are not predicted by

any statistical scintillation theory. Apparently, sharp gradients in

el.ýctron density variations affect the field distributions in ways

quite different from the way in which uniformly disturbed irregularities

do. The effects seem to be most distinct at GHz frequencies.

Nuclear explosions in the atmosphere are known to create violent

perturbations in the ionosphere. It is thus of interest to investigate

the effects such violent ionospheric perturbations may have on waves

propagating through them. Based on info,..mation accumulated in the

open literature the gross ionospheric features after the nuclear

4 explosion are known, but for wave propagation studies we need to have

fine structures down to scales of ten meters or less. Since such

fine details are unavailable it was suggested to us to use the equatorial

bubble data as a basis for construction of a model. The horizontal

structure is unchanged; it is still based on the in situ data. How-

ever, the important modifications have been made in two aspects:

4 the vertical extent of the bubble and the vertical correlation distance

of the spiky structures. To accomplish both of these aspects we have



effectively superposed three bubbles on top of each other. In this

model, the background ionosphere has a maximum electron density of

11 162.8x0l electrons/m2 and an electron content value of 8.9x10 elec-

trons/m2 , corresponding to a slab thickness of 320 km. Superposed )a

this background ionosphere is a region of depleted electron densities
with maximum depletion equal to 6.7x1016 electrons/m2, Inside the

depleted region there exist sharp gradients that have vertical corre-

lation distances equal to 50 km to 100 km. Numerical computations show

amplitude scintillations to be appreciable at 4 GHz (S 4 -0.26) and

clearly discernible even at a frequency as high as 15 GHz (S4=0.0025).

The dominating component of the phase fluctuation has its origin in the

variation of the optical path which has the inverse frequency dependence.

The phase departure from the optical path has a rough f dependence.

At 4 GHz, the standard deviation of phase departure is 0.09v radians

or 16 degrees. These results and additional details have been published

(see section 4, publication 6s).

In a separate investigation -ie have also carried out computations

that indicate how a pulse would distort while propagating through this

bubble medium. To do this, the pulse is Fourier decomposed into dis':rete

frequency components. Tne parabolic equation is then solved for each

component, which recombines at the receiver location to form a pulse.

The results are described in a thesis (see section 4, publication 10).

Since it is attached as Appendix B, we shall not repeat i.t here.

2.2 Propagation Effects through Ionospheric Irregularities

Under the support of this p:oject we have also worked on several

problems using the random, medium approach. These are described in

the following.



When a pulse propagates through the random medium, the pulse is

expected to be broadened. In ceneral two distinct mechanisms may be

responsible for the broadening of a temporal pulse. In the first

mechanism the pulse arriving at the receiver essentially perserves

its shape, but the arrival time fluctuates from realization to realiza-

tion. This fluctuation in arrival time may be caused by pulse wandering.

One can envision the presence of targe irregularities which may be

responsible for the pulse to travel along a different path and hence

wander as a function of time as the irregularities move through the

propagation path. In the second mechanism the pulse may be broadened

due to scattering, especially multiple scattering. In this case each

arriving pulse is spread, resulting in an broadened average pulse.

To distinguish these two pulse broadening processes: wandering and

spreading, one needs to work with four-frequency mutual coherence

function, r4 The equation for F4 is derived and solved for two

special cases in a paper (see section 4, publication 1). The results

show that pulse wandering is the important mechanism under weak

scattering conditions and pulse spreading is the important mechanism

under the strong scattering conditions.

The arrival time of a radio pulse as observed by a fixed observer

can be defined by the first temporal moment or the "time centroid" of

the pulse. When this concept is applied to wave propagation in a random

medium, the pulse arrival time becomes a random variable and will fluct-
r

uate about some mean value, giving rise to the phenomenon commonly

called pulse jitters. It is then of interest to investigate the
F

statistical properties of this pulse Jittex, which can be done by

using the multifrequency mutual coherence functions. This problem is

5



the subject of a paper (see section 4, publication 2) where, among

other things, the statistical moments for the pulse arrival time are

derived in the fully saturated regime. Under this extreme limit, the

mean arrival time can exceed the free space time delay by ac kppre... i'

value. At the same time, calculations indicate that fluctuations about

the mean arrival time are very small when compared with the excess time

delay. This suggests that the excess delay time is caused mainly by

pulse spreading and not by pulse wandering, in agreement with calcula-

tions carried out in publication 1 (see section 4).

In applications it has been found convenient to describe the pulse

by its beginning several temporal moments. Using such an approach,

the zeroth moment is related to the total energy in the pulse, the

first moment is related to the mean arrival time, the second moment

is related to the mean square pulse width, the third moment is related

to the skewness of the pulse and the fourth moment is related to the

kurtosis of the pulse. For propagation in an ionosphere expressions

for these five moments have been derived (see section 4, publi.cations

4 and 9). In addition to the physical significance of these temporal

moments, they can also be applied to digital communications. An ideal

pulse in such a case may become distorted and stretched owing to propa-

gation effects. When the pulsewidth is stretched to occupy an interval

longer than one communication bit inter-symbol interference is expected.

Using the temporal moments an upper bound of the energy content outside

of one chip can be estimated. Readers interested in details should

consult the original publications, one of which is attached as Appendix A.

2.3 Experimental Observations of Scintillation Effects

In addition to theoretical investigŽ.ations of the scintillation

problems we save also collected some experimental data for evaluation.



Earlier multifrequency scintillation data received at various stations

around the globe by SRI International have been analyzed and the results

have been reported in our Scientific Report No. 2 (see section 4, publica-

tion 8). These early results will not be repeated here. More lately a

joint effort was made in collecting scintillation data at Ascension

Island. These more recent data have been partially analyzed and some

of the results are reported here.

In the course of analyzing the GHz scintillation data from Ascension

Island, it became clear to us that there exist time shifts up to one

second or so between similar fades of the L- and C-band signals.

Initial efforts were concentrated on eliminating possible causes of

equipment origin. Several possibilities were considered and finally

with the test tape provided to us by AFGL, it was concluded that the

shifts are real physical phenomenon rather than the artifact of the

data recording process. The data have been analyzed and a physical

model has been proposed to interprete the phenomenon. The results
have been written up as a paper to be published in Geophysical Research

Letters (see section 4, publication 6). It is also included as Appendix

C.

The Ascension Island data are still being analyzed. We report

their preliminary findings in the following.

Statistics of Multi-Frequency Scintillatior. Signals

The UHF, L- and C-band data from Marisat collected at Ascension

Island provide us with multi-frequency data to study the statistical

behavior of the signals. Segments of these multi-frequency data were

selected for detailed analysis. Fig. 1 shuws such an example where

scintillation indices (S for every minute are presented for L- and

7



C-band signals during a ten hour period on Jan. 27, 1981. Five segments

of data with varying degrees of scintillation activities were chosen

to study the power spectra, the frequency dependence of S4, and the

coherence time of the scintillating signals.

Multifrequency Power Spectra of Intensity Scintillation

In Figs. 2-8, spectra for UHF, L-band and C-band scintillation

signals are presented for seven cases. In all cases, the UHF scin-

tillations were saturated while the C-band scintillations varied from

very weak to moderate. The L-band scintillations varied from strong

to saturation. The spectrum for weak C-band scintillation (Fig. 2)

follows the prediction of weak scintillation theory: a flat low fre-

quency part followed by a roll-off at the fresnel frequency with a

high frequency asymptote sloping at v-p-l, where p is the power index

of the three dimensional power-law spectrum of the form K for the

irregularities. The spectra for strong scintillations at UHF or

L-band are qtuite different from that for the weak scintillation case.

In general, the spectra are broadened with the roll-off frequency

pushed further to the high frequency end. There is also evidence

that the low frequency part of the spectrum is enhanced. Table I

summarizes the important features of the spectra for the seven cases.

It is interesting to note that the slopes of the high frequency

asymptotes are consistently higher than most of the previously measured

values.

Frequency Dependence of S4

If we assume the frequency dependence of the scintillation index

to be of the form

8



Table 1

case S4  j Other features

UHF 9.6 4.5 Broadening, low frequency
enhancement

L .35 4

C .08 4

UHF .98 6 B, LFE

Ii L .77 6 B

C .13 6

UHF 1.1 6 B, LFE

III L .94 6.5 B

C .15 6.5

UHF 1.0 6 B, LFE

IV L .92 6 B

C .17 5.5

UHF .95 6.5 B, LFE

V L .96 6

C .18 6

UHF 1.0 6 B, LFE

VI L 1.1 6 B, LFE

C .24 6

UHF 1.1 5.5 B, LFE

VII L 1.0 5.5 B, LFE

C .31 5 B, LFE,

9



S4 • f-n (1)

then the spectral index n can be co~iputed from ýhe data. Between

L- and C-bands signal,

S4 (C)
n - -2.45 log-- (2)

S4 (L)

Figz.. 9 and 10 show two cases of the spectral index n plotted as

a function of the scintillation index of C-band signal. We note that

n remains approximately constant for S4 (C)<0.2, predicted by the weak

scintillation theory. As the scintillation gets stronger, n decreases

due to 'he saturation effects on the L-band signal. This manifestation

of the multiple scattering effect is more apparent when one computes

the spectral index between UHF and C-band signals.

According to the weak scintillation theory, the spectral index n

is related to the power indey p of the irregularity spectrum by

n - 42 (3)

Therefore, it is possible to deduce the power index p from the

scintillation indices of L- and C-bands,

S4 (C)
p = 4n-2 - -9.8 log -2 (4)

S4 (L)

Figure 11 shows a plot of spectral index n as a function of time

for the event on the 27th of January (Figure 1). From the six hours

of data, we selecto. those periods when S4 (C) was between 0.05 and 0.25

for computing n such that tre weak scintillation theory may be valid.

We note the definite tend of increasing value of n after midnight

indicating the steepening of the irregularir- power spectrum. This

If. ]10



4l

may correspond to th. dissipation of the small size irregularities

after midnight. The values of n and hence p from these computations

may be somewhat lower than the real values for the irregularities

since some saturation effects may already be important in the L-band

signal even though only weak C-band signals have been chosen in the

computation.

Since the power index p of the irregularity spectrum can be obtained

from the slope v of the high frequency asymptote of the intensity power

spectrum as well as the spectral index n for the frequency dependence

of S4 , it is interesting to compare the estimated values of p from

both methods. Table II shows such a comparison.

Table II

Data Set S4 (C)/ 4 (L) n p v(L) V(C) p

Jan. 26
2135-2240 .15/.70 1.64 4.56 4.34 4.8 5.34-5.8

Jan. 26
2310-2400 .09/.47 1.76 5.04 5.0 4.9 6-5.9

Jan. 27
2125-2152 .15/.67 1.59 4.36 4.2 4.1 5.2-5.1

Jan. 30
2213-2258 .17/.85 1.71 4.84 5.6 5.4 6.6-6.4

The values used in the Table are averaged values for the whole

period of each data set. We note that the p values estimated from

the high frequency slopes of the aJwer spectra are consistently higher

than the p values obtained from the spectral index n. This as explained

above, may be due to the fact that L-band scintillations were too strong

Sfor weak scintillation theory to be v.,]'d.

Fi



Coherence time of the UHF signal and the strength of scintillation

In strong scintillation theory when the multiple scattering effects

are important, it is known that the signal becomes decurrelated, resulting

in decreasing coherence time. indeed, when the scintillat-on is ..

into the saturation regime, the S4 index is no longer an accurate measure

of the strength of scintillation. On the other hand, the signal coherence

time becomes a good indicator of how strong the irregular structures are.

.'igure 12 demonstrates this point as we compare the coherence time T
of the UHF signal against the S4 index of the C-band signal. We note

that the decrease of T tracks well the increase of S4(C) and vice

versa.

I2



3. Conclusion

We have investigated three aspects of the scintillation problem

in this project. They are: propagation effects through ionospheric

bubbles, propagation effects through ionospheric irregularities and

experimental observations of scintillation effects. Tn the first aspect

the propagation medium is simulated by using in-situ data obtained while

traversing an ionospheric bubble. These bubbles have been observed to

hAve highly complex struLture? with very steep gradients. Because of

the peculiar nature of the bubble medium a deterministic approach

rather a stochastic approach to solving the wave equation is used.

The results show scintillation bursts especially at GHz frequencies

when the ray paths intersect the sharp gradient. These calculations

are further extended to a simulated ionosphere under nuclear perturbations.

Severe scintillations at frequencies as high as 15 GHz are possible.

In the second asiect we are mainly concerned with the temporal

behavior of radio signpIs. In this vein we have investigated the

statistics of the pulse arrival time (commonly called pulse jitters),

the pulsewidth and their effects to digital communication. Even though

our study is theoretical in nature, its results have applications to

satellite based communication and navigation.

The third aspect of this project is concerned with investigations

of scintillation effects on transionospheric experimental data. The

experimental data re recordings made at various ground stations of

radio transmissions from the orbiting DNA Wideband and also recordings

made at Ascension Island during a special campaign. Both sets of data

are of high quality, digitized on magnetic tape for computer processing.

L These data possess multi-channels on several frequencies and phase

4f 
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coherence so that both amplitude and phase fluctuations can be studa.ed.

The results show agreement with theoretical expectations and also some

new phenomena which require explanation that only additional investiga-

tiouri and experiinentations can provide.
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Figure Captions

Figure 1. Example of L-band (a) and C-band (b) scintillation data.

Figure 2. Intensity power spectrum for UHF, L-band and C-Land signal--

Case I.

Figure 3. Intensity power spectra for UHF, L-band and C-band signal--

Case II.

Figure 4. Intensity power spectra for UHF, L-band and C-band signal--

Case III.

Figure 5. Intensity power spectra for UHF, L-band and C-band signal--

Case IV.

Figure 6. Intensity power spectra for UHF, L-band and C-band signal--

Case V.

Figure 7. Intensity power spectra for UHF, L-band and C-band signal--

Case VI.

Figure 8. Intensity power spectra for UHF, L-band and C-band signal--

Case VII.

Figure 9. Spectral iudex n computed from L- and C-band data.

Figure 10. Spectral index n computed from L- and C-band data.

Figure 11. Evolution of the spectral index n as a function of time

during the event on January 27, 1981.

Figure 12. (a) Coherence time for UHF signal (b) Simultaneous scin-

tillation index for C-band signal.
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Abstract

A radio signal after propagating through a turbulant ionosphere

will suffer distortion owing to dispersion and random scattering.

For coarse description of a temporal signal, the temporal moments

have beer found to be convenient. Past studies have shown that the

zeroch moment is related to the total energy in the pulse, the first

moment is related to the mean arrival time, and the second moment is

related tu the mean square pulse width. In this report, we extend the

analysis to the third and fourth moments which are shown to be related

to the skewness and kurtosis of the pulse. The physical meanings of

these quantities are explained. The numerical values of these quantities

under typical ionospheric cjaditions are calculated.

For gpplication to dig:tal communications, it is desirable to know

the eoergy content of the received pulse outside of the original pulse

width. This is because an ideal pulse, due to propagation effects can

be distorted and stretched to produce a long tail occupying an interval

longer than one communication bit. Using the temporal moments the upper

bound of the energy content outside of one chip can be estimated. The

numerical values of these bounds are also computed.

3,)



Acknowledgment

The advice and suggestions of Dr. K. C. Yeh were most valuable

ard well-appreciated throughout this research. Spe-'al thanks go to

Mrs. Linda Houston for typing the manuscript.

The research was supported by the Air Force Geophysics Laboratory

aal Headquarter Space Division through contract F19628-78-C-0195.

4 "

4



Appendix A

Table of Contents

'I Page

L1. Introduction. .. ......... . .................. ............. 34

2. Calculation of Temporal Moments. .. .. .......... ........... 37

2.1 Definition of the Moments .. .. .......... ............. 37
2.2 Equation for Two-Frequency Mutual Coherence

F unction. .. .. ...... ........... . .. .. .. ..... 39
2.3 Formulas for I'o, r~s r 2 , r 3 , r 4  . . . . . . . . . . . 44
2.4 Formulas for Temporal Moments . .. .. .. .. .. .. 46

3. Temporal Moments and Numerical Results.... .. .. .. .. ... 56

32. Mean Arrival Time and Mean Pulse Width .. .. ........... 57
3.2 The Third Moment and Skewness .. .. .. .. .. .. 6
3.3 The Fourth Moment and Kurtosis. .. .. ........ ........

4. Description of the Signal Tail .. .. ............ ........... 73

4.1 Two Theorems about Moments..... .. .. .. .. .. ....... 7
4.2 Application of Those Theorems .. .. ....... . . . . . 7
4.3 Numerical Results . .. .. .. .. .. .. .. .. .. 79

5. Summary andConlsonc.l.sion.. .. .. .. .. ........... 82

References . .. .. .. .. .. .. .. .. .. .. .. .. .... 84

3 4



1. Introduction

When signals propagate through a dispersive and random medium, they

suffer distortion due to frequency dispersion and random scattering. The

main feature of this distortion is the broadening of the signal. In

binary communication. the broadened signal in one bit may extend into

the neighboring bits. If it is of suffi~cient amplitude, this extension

can produce serious errors in the decision making process. A practical

q example is the satellite-earth communication link. The signal in this

case must traverse the ionosphere and may become broadened because of

dispersive and scattering effects taking place in the ionosphere. In

this report, it is proposed to describe the temporal distribution of the

signal intensity in terms of its temporal moments and show how these

temporal moments evolve as the signal propagates through a turbulent

plasma medium. The results of this research may help to determine under

what conditions the decision making errors can be considerably reduced.

The theory of using first few temporal moments to describe the tem-

poral distribution of the received signal has been formulated by Yeh and

Liu 11977a]. The works done before include the calculation of up to the

third moment in a nondispersive medium [Liu et al., 1978] and up to the

4 second moment in a dispersive medium [Yeh and Yang, 1977c; Liu and Yeh,

1977; Yeh and Liu, 1977b; Yeh and Liu, 1979]. In Chapter 2 of this report,

the evaluation of temporal moments is extended to the fourth order. Mean-

4 while the medium will be assumed to be dispersive as well as turbulent.

In this calculation, the two-frequency mutual coherence function, r, is

expanded into a power series of the relative difference of the wave

4 ~numbers. For the purpose of computing temporal mnoments it is sufficient



to evaluate the series coefficients only up to the desired order.

The equation for r will be derived by using the Markov approximation

under the assumption of forward scattering.

Chapter 3 contains a discussion of the physical significance of

the moments formulated in Chapter 2. Quantities such as skewness and

kurtosis will then be defined in terms of the temporal moments. These

quantities gre used to describe the temporal characteristics of the

signal intensity distribution. The formulas will then be specified by

two sets of parameters that describe the geometry and content of the

medium. Numerical results will be presented as graphs.

S,.,ie properties of moments will be used in Chapter 4 to describe

the trailing tail of the received signal. By using these properties,

the upper bound for the fractional energy of the signal outside a time

interval can be calculated. With binary communica-:ion application in

mind, we calculate the upper bound of the fractional energy of the signal

contained in the neighboring bits. Some numerical results will be shown.

The geometry of the problem is shown in Figure 1. We assume that

thero. exists a plasma medium with a homogeneous background in the region

z>O and that random irregularities exist only inside the slab between

z-0 and z-L. The positions of the transmitter and the receiver are also

shown in this figure. Note that the receiver is always at a position

with z>L. Carrier plane waves with a Guassian envelope are assumed to

be incident at z-O.
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2. Calculation of Temporal Moments

We give the definitions of the moments first. The equation for

two-frequency mutual coherence function, r, is then derived under the

forward scattering assumption and Markov approximation. r is expanded

into a power series of the relative difference of wave numbers. The

coefficients of this series up to fotvrth order are evaluated. Moments

up to fourth order can then be computed. This method for calculation

of temporal moments was introduced by Yeh and _iu [1977a].

The computations for the third and the fourth moment are quite

tedious. We can imagine that the work of evaluating the fifth or any

higher order moment will be more tedious and it will be easy for us

to make mistakes. So we will stop at the fourth moment, although any

higher order moment can give us more information about the signal

shape.

2.1 Definition of the Moments

The problem of plane wave propagation in a random nedium is usually

Formulated by the equation

P(zt) - ( f(w)u(z,w)ej[wt-k(w)z] dw (1)

Here we assume that the t.'Ave propagates in the z direction. In this equa-

tion, u(z,w) is the complex amplitude and is assumed to be unity at the

boundary, i.e., u(O,w)-l at z-O in our geometry of the problem. u(z,w)

is used to describe the random effect on the signal component at circular

frequency w in the medium. In general -a is a random function of transverse

coordinate P as well as z and w. When there is no cause of confusion, the

explicit indication of such dependences will be suppressed. f(() is the

3 8



frequency spectrum of the signal impressed. k(w) is the wave number

and usually includes the dispersive chb.acteristics ot the medium.

We note for real p(z,t), both f(w) and u(z,w) are required to be even

in co, which we assume.

Rewrite equation (1) in the form

P(z,t) - ReA(z,t) exp[j(w t-k z)] (2)c C

This represents a wave of carrier frequency w , wave namber k -k(wc),

and slowly varying complex envelope A. A is given by

7 J [S•t-(k-k )z]
A(z,t) - F(O)U(W,')We dQ (3)

where F(\)-f(wc +S), U(z,Q)-u(z,W +Q) and Q'-w-. Note that A(z,t) is

random since u(z,w) is random.

Define the nth temporal moment by the equation

(n) - ( nM(z) <A*(zt)t A(z~t)>dt n-0,1,2, (4)

Here the notation < > denotes an ensemble average. Insertion of equation

(3) in (4) leads to

M(n) (z) F*(S 2)F(Q2)rtn exp{j[ 1-P12 )t-(k1 -k 2 )z]}ds 2d&22 dt (5)

where kl:k(wl) and k2 Ek(w 2 ) and r is the two-frequency one-position mutual

coherence function given by

r <U'P,Z,01)U*(pZZ 2 )> <u(PzW1)U*(PZw2)

In order to proceed further in equf.tion (5), we need the relation

t n eJ(21-S2)t dt - 27(-J) GO - ) (6)

-3)
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where 6(n(l-12) is the nth-order Dirac delta function. Using equation

(6), equation (5) becomes

Jk2 z [F() e-jklz

M(n) (z) 2Tr(j) n F*(Q 2 )e n

(7)

Further integration of (7) requires knowledge in r. The form of (7)

suggests an expansion of r in the series

r(klk 2 ) r0+rlr--r 2 n2+ .... (8)

where n-(k 2 -kl)/k 2 , and

r rn (9)Fn"n.' an In
n!n n-0

As can be seen in (7), the nth temporal moment dependo only on r0 , r1,

r and not on r1 and higher order terms.
n n+1

(n)Once ro, ri, ... rn are calculated, we can obtain M( z) quite

straightforwardly although the operation can be very tedious as we

shall find later on.

2.2 Equation for Two-Frequency Mutual Coherence Function

To derive the equation for r, let us start from the Helmholtz wave

equation for the wave function T

V2 U+k 2 (l+ý•)i- 0 (10)

where the time dependence exp(jwt) is understood. The random function •

is assumed to be a hotaogeneous random field and is independent of frequency.

The frequency dependence is included in the factor S. In a turbulent plasma

m.redium
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2

, - _ .. ,AN

p (11)

where w is the circular plasma frequency and N is the electron densityp

of the background medium which is assumed to be homogeneous. AN is the

fluctuating electron density. The validity of equation (10) for various

waves has been discussed by Tatarskii [1971]. In general it requires

that the typical turbulent scale be large compared with the wavelength,

which we assume.

From equation (10) and under the forward scattering assumption we

can obtain the parabolic equation for the complex amplitude u as

V 2u-2jk -L + k 2 B(W)&(E'z)u " 0 (12)

where u and T are related by '-u exp(-Jkz) and V 2 - +x-a2 dy-

From equation (12), under the Markov approximation, the equation for the

two-frequency, two-position mutual coherence function

r(1, 2) <u('P1PzvW u*(O=Z ,•92)ý'

can be derived [Tatarskii, 1971]

+ 2kk-- (k 2 V2 -k1 V
2 )r(Q 1 , 2 ) -p Ap(2-o 1 )r(• 1 ,, 2 ) - 0 (13)

3z 2l2 Ti Ti p

Here we denote this two-position function by r(oj,o 2 ), so that it can be

distinguished from the one-position (pi-o2) function r in Section 2.1.

The dependence on frequencies is suppressed when it is not explicitly

needed. In the equation above A (o2-Pl) is givwa by
P

Ap£2-P1) " -- [(k1 2 61
2 +k 2 B2

2 )A (0) - 2ki•lk. A-(r)2-CI)] (14)

where 61 =S(w1 ), 62="(w2) and A. o) is defined by

[I
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A•(•) f B,(-,z)dz (15)

and

B•(;,z)P +P <• ,'• +, z'+z)> (16)

where &(C,z) is a homogeneous random field. If plane waves are impressed

at zaO, r(P 1 , 2) is a function of a2-PIMP and equation (13) becomes

a(1)+ Uk V-r'* A (pOr(w 0 (17)
as 2kjk 2  T 2 p

where Akuk 2-kl. The boundary condition for (17) is r( )-1 at zoO.

Since for the calculation of up to the fourth moment, only rO, ri,

r., r3, r4 are required, it is not necessary to solve equation (17) for

r itself, but its expression suggested in (18).

When O<z<L, let's assume

r(,) - W(z)expý(z) (18)

Where

*(z) - -(k 1
2 $1

2 +k 2
2 

2
2 )A (O)z/8

Expand W(z) in the form

W W0+W1 n+W2 n2 + .... (19)

If equations (18) and (19) are substituted in (17), inside the turbule.nt

slab, i.e., O<z<L, we obtain the following general equation:

;Wn 1 2S-A()n. ___ ,+1 o •. 1-2 q + - 12k2 T 4 k 2 2 22Ar( 0)] [W +W-+ . +W++W]
~z 4 +)n W n-i n-2

n i, 2, 3,....

(20)

42?
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and

awo 1
-k22B22A (p)WO - 0 (21)•z k26

The boundary conditions at z-O are

W0-, W 1-W2- .... - 0 (22)

Note that in the process above wte have used the expansion of B1

81 - 82+2a2n+3a2f+ ... + (n+l)6 2 nn+ ....... (23)

which can be shown to be valid by using (11). When z>L, i.e., outside

the turbulence slab, we write

r(P) - W'(z) expo(L) (24)

We also expand W'(z) into a power series

W'(z) - Wo'+Wj'rr4J2 'n 2+ (25)

The corresponding equations of (20) and (21) can be written directly by

setting A (p)-O in equations (20) and (21), i.e.,

n -- V 2 (W' +W' + ... +W)

S2k2  T n-1 n-2

n - 1,2,3,....

(26)

and

- - 0 (27)

The boundary conditions at z-L are

Wo'(L) - W0 (L), WI'(L)-WI(L) . ...... (28)

4-3



n-l

n-I k22 622A 'PW V [ 7 ! 2 2 A6..W
Dz 4 & kn- 2k2  T 4 n-2"n-3

(29)

Subtracting (28) from (20) we obtain

a(W -W I-
"az " - k 2

2 B2
2 A (,) (Wn'Wn-i) " [ =I- V I A•()]Wn_ (

(30)

Then a set of recurrent formulas for Wn can be obtaLned for O<z<L
z 2 22A•(.'• k2 (82' A 2522A ()

W (z) u Wn(z) + e L VT+ - k2 A ]n n-i 2k-,4T 4

Wn (z')dz'

(31)
n-2,3,4 .....

1 1 k22022At()(z~ z,) , 3"4

WI(z) W0 (z) + e -- 2 VT2+ - ý k 2 2
2 A (P)]W0 (z')dz

Sk 2 28 2 A (p1z (32)

-e

It is easy to obtain a similar set of "ý ',.:ant formulas for W nn
z

W '(z)-W '(L) - (W' (z)-W' (L)] -V VT (z_)dz'n-Inz)-w n-l 2k2) fT •n- I dz

L
n-1,2,3, .... (33)

Note that in deriving equation (30), (31), and (32) we have used the

boundary conditions in equations (22) and (28). From equations (21),

(22), (26) and (27) we can evaluate W0 and W0 '

W0 (z) - exp [ k,-:-Ar(G)z1 (34)
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and

W0 '(z) - Wo(L) - exp [ - k2
2 2 A `)L] (35)

Using equation (34) and (35) as the starting point, the recurrent formulas

(31) and (33) will lead to W (z) and then W '(z) for any n-1,2,3,....n n

After we have these results, equations (23), (24) and the relation

n

-a - n-0,1,2, ... (36)Fn n, n n-O,POO0

can be used to obtain r0, ri, r 2 , r 3 and r4 for z>L.

2.3 The Formulas for rn, r1, r2, r., %

If we assume the random field $-WN/N is isotropic as well as homo-

geneous, then A (p)-A (P). Since A (P) is an even function, we can ex-

pand A&(p)

A (')= A (P) - A0+A2 ) 2 +Aio&+A 6 p 6+A8p 8+ ..... (37)

K' So

A (P)Lo- A0

VTA() - o

V T2A&(P) o'-O 4A 2

Having these identities above, we are ready to calculate FO, F1 , F2 , r3 , Fr..

As stated in the last paragraph of Sectioa 2.2, once W0 ', TW,', 1.70 W~to W,'4

are obtained, we can evaluate F0 , Fl, F2 , Fr9, % from equation (24) and (36).

For the region z>L, the results are as follows:

47
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ro - 1 (38)

r, - k262
2A2(2Lz-L2) (39)

r'2 -~k 2 '282 2AOL - 4,6 22A2(2Lz-L2)

2 .a82A4(3Lz2-.3L2z+L3) ~ 4A2 LZ 2- LL 3:, + ~L4) (0
24 32

r3 4 k2 282 2AQL -4k 202
2A2(2Lz-L2)

-203 2
2A4.(3LZ 2-3L2z+L3)+j iT- A6(12LZ3-18L 2z2+12L 3z

-3LL4)-k 2
282 

4A2 
2(L2zZ2--Z L3Z+ ~- L4)6 8

+ k2
3 a26A2 3(720LZ3z3 1320LL4Z2+846L5z-185L6)5760

k 2 k 3 62~ 4 2(Lz-L
3)+ J- k2a2 4A2,A4(18L2Z3

-31L
3z2+20L'4Z 23 L5) (41.)

% yk 240- k2
282

2A0 L

+ 2B924L - -L L~ + ý'7- L~ - '~-Lz+ L8)16 32 5760 80640 645120

4 k 366A3iL 3z3- ~ 4Z2+ 14 5z 31k-13O L 192 7 6222 48 160u 19-2~

8k"24A 2 (-i Lz- y2 L'z+ 15 L4)12 16

-ik82 1A.2(2Lz-L 2)

32192 2~~ 56

+jk'¾24 ACA2(Z L'-z- L')

+6,'At 2(12L2z"-28L-lz-+ L2 1~' 88 20z+i- b3 15 9-L 6

continued on next page
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-_B2 2 A4 (12LZ 2 -12L 2 z+4L 3 )

-jk 2 8 2 4A 2 A4 (15L 2 z 3- L5-5 L 3 z 2 + 50 L4z_ 6235)6 3 6
+k 2

2 8 2
6A 2

2A4 (3L 3 z4- _ L4z 3+ 2 L 2-'- L6 z+ 2 LT)

4 48 720 560

+k 2
2 82 AoA4(- L-z 2 - L3z+ L L 4 )44 12

822
+J j-2 A6(48Lz 3-72L 2 z2+48L3z-412L)

+aZA 2 A6 (e L2z -51L 3 z3+ - LuZ 2- 24 L5z+ L6)
42 10 4

82?

+ 7 A8(96LzKlQ2L 2 z3+192L3z2 4Z96Lz+ 96

(42)

where

Sk2 =(W2/C)(i-W 2 /•2)1/2
/ /2 (43)

and

62 - -wp 2 /(W 2
2 -w p2)

in a turbulent plasma.

2.4 Formulas for Temporal. Moments

Now, we consider a plane wave Gaussian pulse at carrier frequency

W propagatilig through a turbulent plasma. The envelope of the original

pulse is given by

A(t) - exp(-t 2 /To 2 )

In other vords, we have the frequency spectrum

e.1 ' -t 2 /T 0
2  j To /4f(W) "e-/ cosw t ejwt dt - 4 {exp[-TO"(w(,c) 2/4]2-t C 4/

S+exp[T"(-w )(44)



From the relation F()W-f(w c+0) and •'--wcl we have

F(Q•) - F-(iI)÷F+(Ro)

where

To
F-(Q) - (exp[-T 0

2 (D2+ 2 )12/4]}

To

F+(n) - {exp[-T 0
20 2 /4]1

Since the value of To gives an order of magnitude for the original

signal width, usually T0ocw is much greater than one, which we assume.

rhis implies that F-(R) and DnF-(Q)/,,n for n-1,2,3,4 are nearly zero

in the region O'-w , meanwhile F (0) and anF (,)/,,n for n-1,2,3,4
c+ +

have negligible values in the region S7'-w
c

Now let us divide the integration in equation (7) into two parts

as:

M(n)(z) (n) ()M" (z) - z+M+ (z)

where
-W
c

i- (z) 2n(j) J F*(Qz2 )eik2z a [F(OIl)re-k1Z]/ 2 i 1I

dO2,

and

M÷(n)(z) E 27(j)n f F*(Q2,)eik2z 3 nLF(Il)reikiz ]/• 1 n
. C

,; dSý2

Then for the reasons stated in the last pa.7agraph, we can approximate

M_(n) (z) and M. (n)(z) as



M(n)(z : • n ,_F•(,,),jk2z an[F( ,~-Jklz]/,,,,nl

dQ2

(45)

and

M (n)(z) 21(j)ri n F*+( jk)ei2z n a[F(Fl)re-Jklz]/,lln[+ 2 ( ) F
dQ2

(46)

If we calculate the partial derivative inside the integrand in equa-

tion (45) and use the results in equation (38) through (42) for r 0 , ri, r 2 , r 3 ,

r4, we can express M(n) (z) as a summation of terms which have the general form

y F*-(Q2) (amF(S)/aS) 2m)g(z,S 2 )dQ 2  (47)

where m is one of 0, 1, 2, 3, 4. In the last integration, g(z,Q 2 ) has the

form as

A2 J 32 k2 k ;3kz Z 34k2 m
g(z,112 ) " B82hk2i - ( ( -

where B is some constant in terms of L, z, A0 , A2, A4, A6 and A8 , and h,

i, J, k, £, m are some nonnegative integers. Note that from the expressions

for 82 in equation (11) and k 2 in equation (43), we can find that g(z,2%) is

either an even function or an odd function of w2 , since Q2=W2-W.

Doing the same thing for M (n)(z) in equation (46), we can obtain

an identical su.mation expression for M+(n) (z) except that the corres-

ponding general expression of (47) becomes

F* +(2)[1aF +(Q )/ a 2m g(z, 2) dP (48)

which just has different spectrum.

4 rq



For the purpose of further calculation in expressions (47) and (48),

we expand g(z,R2) into a power series in two ways as

9(Z-0l2) -C929Q

and

g(z,- 2 ) - gO'+Sj'(02+2wc)+92'(02+2wc) 2 + ... (49b)

where

1 .g(Z-Q 2)
.= L2-0,1,2,3,

392  Q2in0

and

1 11 g(zS-2) X-0,1,2,3,

D2.
C

note that if g(zQ 2) is even with respect to 02--w c(W20), gz-(-1) gz'

and if 9(zO2) is odd with respect to S2--W I g£-(-l) £+g2 '. Having

these results, we can rewrite expression (47) as

)+ 2'02 2w ... lId
iF.*(P2)[D3mF_(S2)/aOZM][80'+S1'(Q2+2w +2(n+w)2+ -Q. d2

c- c

+J 4.(2')/Sn2" + .... ]dQ-2 ' (50)

where we have replaced the variable Q2 by Q2'-m2 2 +2w
C
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On the other hand, using equation (49a) we can also rewrite

expression (48) as

SF*(SI2)(aF +(02)/;Q2m)g(z,S12)d02 )

F + F**(Si 2)(aF +( 2 )/DR 2m)[go+g1 S12+g 2 Q2 2+...]dk2

(51)

In the first order calculation, we neglect g2'022Q term and all higher

order terms in equation (50) and neglect g 2P2 2 term and all higher order

terms in equation (51). Now, if we change the dummy variable Q2' into

Q2 in equation (50) and add it to equation (51) in both sides, we can

(n) (n) (n)
conclude that M (z)iM- (z) +M+n(z) can be approximated by a summa-

tion of terms with a general form

F- F*(02)(amF-(Q 2)/3Q 2 )g(zja 2)dS2 2 + F..(1)Dr+0)DI'gZ0)O

2gO F F+*()(aF+(Q2)/+R2m)d+2 if g(zQ 2 ) is even with respect
.4W to W2-0 and m is even

0 if g(z,2 2 ) is even with respect

0 a to w2-0 but m is odd

2gl f F+*(J )[amF+(02)/3Q2m1ý22dQ2 if g(zil2) is odd with respect
to wa-O and m is odd.

S0 if g(z,S2) is odd with respect
to W2-0 but m is even

So, in summary, for the purpose of obtaining the formula for the

nth momerL, we first expand equation (45) and (46) to get summations of

terms with geiinral forms in expression (47) and (48) respectively. Then
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equation (52) is used to reduce each ter-- .nto a simple integration

form like that gi-Tn by the right hand side of equation (52). After

finishing those simple integrations, we add them up to obtain the

formula for the nth moment. In order to shorten those lengthy for-

mulas, we use the notations X-c 2/w c2 and Z-1-X. Those formulas are

M(0) T T3
-~( 3)

4

(1) (0) A2  _1/2
M /M( c - (2Lz-L 2 )X 2 Z 2 ]Z (54)

(2) (0) T0
2  z 2  A0 L A2

" '-4 + 7 - 4c c- 2 (2Lz 2 "L2 z)X 2Z 3

4A4 2
+ -3, (3Lz 2 -3L 2 z+L 3 )X 2 Z-4 + -= (1 2z2 - h 3z+ L)X"Z-5

4 24 32H _ __ ___(55)

M 3 )(z) /M (0) a 3 z T02 z-i 2  -1 xz-5/4+ 1 3  3/
4 c 2 cw

C

+ 3 Lz X2Z7/2- 3T 0
2

+ c- A0  y6-/ - A2 (2LzL2)X2Z'/2

3 z A2  153-2 A2 (2Lz-L 2 )X2 Z 7 2 - -- (2Lz-L 2 )X2 (3 + -L5 X)Z-9/2

c

4z+ A3L-3L2z+L3)x2Z-9/2

+ 6 A6(3L4 12Lz3+I8L2z2 _12L3z)X2Z- 1 1 / 2

c

173
6 22• L2z3- 3L+ , Z2 L -• L3z2+ •-L Lz)X4Z-11/2

960c' A2 3(720L3z3-1320L~z2+846L z_185LG)X' Z-11/2

16c3 A0 A-L-2L-z)XZ- continued On next page



1 5~413/2
- A2A4 (18L2z3-3lL 3z2+2OL4Z -L 5)4

(56)

M(4) ()M(0) 3. 4 3z2  3z2 3-3
16o T0Z+ z X(2+X)Z

4 3T0
2  3 2

+ ~ z-+ c-ý- AOL X2Z-+ 2c'v AOL X2Z-4

+ Cy(,6X2+ ýL 3+~
2 4

3 3T0
2

+ .16-c4 A0
2L2 X4Z-6 _ 4c=- A2 (2Lz2-L2Z)X2Z-3

- A2  2L2L)(. X4 1 +12X 2 ) Z-1

C7 A2(2LZ-L)XZ

2z2
+ 7A 4(3Lz -3L z+L3)X

2Z-4

A4 2 (L 2 3z+ 3 )y 2 (4X 2 +56X+72)Z-6

+ *-T(Lz'- zL~z- Lz L~XZ

24 3T2

12z 2  21 27 3Z+ 4 4-

A,2
+ L~ L4 - Z L3z+L2Z2)X4,(2 X2  8)-

-Cw- 18 6 (2 +27X+48z
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A2•
3 ( z 15 L5Z3+ L6 z2- 536 7  7217 L8)X8Z_1O

c 2 L - L 240 ý360- y 2688----0

A2
3 3Z4 1 LZ3+14 1 LSz2" 37 6XZ-

- j- (3L 3z' - L~z 3+ -• 3r 6)X'z- 8

A°A222 3 3Z2_ 7
4 L L4 z + 9 LS)X 6Z-a

24A&2  20
+ (2L 2 z-28L3z+ _LZ2- 18 L L6)X42 8

15- 924 29C728 7
+ 24 A2 A(3L3 4  29 L~z 3+ 4-7 LSz 2 - I23 L6 z+ 'L79 )X6Z-9c-- c A224A48372056

ALA 4 z-

+ Z2• (6L 2 z2 -6L 3 z+2L 4)X 4 V7

c

+ 24 A2A6(4 L2z4 -51L 3z 3+ . 4Lz2- 243 L5 z+ 1-9 L6 )X4Z_ 8

2 4 z 10 4C

----b-A8(96Lz -192L z + 92L~z -6 ~ + 9--6 ) 2 -
c

24 -T- A(126Lz 4128L2 z3+12L 3 z2-3L4z)X2Z-6W5

C

-34c- AoA 2 (2L 2 z2-L 3 z)X4Z-6
4

4_ 7 A2A4(18L2 z -31L 3 z3 +20LLz2 _ Z2- 5Z)X4Z 7

c

(57)

In order to understand the physical significance to these moments,

we shift the origin of time to M(1/M(0, which will be defined to be

the arrival time of the signal in Chapter 3. We call the new moments

the central moments. They are denoted by M aud are given by
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n "I

Mi(n) (z) <A*(z,t)A(z,t)>dt - n _ - I MQ,
f M (0 0J!no) M(O

n-0,1,2, .

(58)

We note M(0)-M(0) and 0(1)-0. The calculations of higher order central

moments follow in a straightforward manner by using (58) to give

R T0 2  A0 L 4A4
)(z)/M( - + - X2Z_3+ -- (3Lz 2 _3L 2 z+L 3)X2Z_4

4 4c 2  3W 2
C

A2
2  1

+ A2 7 "3" L 3 z + 1 L4)X4-Z 5  (59)

(/M() 3z Z_5/2 - A2

i(3)(z)/M(0) 3z X Z - A2 z (2Lz-L2)X2(24+15X)Z-9/2
c c

6cA6
- 4 (12Lz 3 _18L 2 z2+I2L3 z_3L4)X2Z-11/2

c

A2A4
-2 (l2L2 z3-22L 3z 2+15L4Z 5z_- 18 )x4z-

c

A2~3
A L3 z3- 1 L4z 2+ iL)X 'z' 5/ 2

S'c 4 2 20 12

(60)
3T2

-(4) (0) 3 4+ 3z2  3T A2

"iX 2Z-3+ (Z)- A0 L X2 Z-3c

A0 L
+ - (6X 2 + 2-" X3+ -3 X)Z-5

C2

A02L2 XZ- (2LzIh-Lz)(O X4 +6X3 )z-

C

continued on next page
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+~.~~.Ž33Z2 I4Z + 3L5)X6Z-8

2T0
2

+ A4 q (3Lz2-3L2Z+L3)X2 Z

w -. (L-3z+)X(4X2+56X+72)Z-6

c

+T0
2  2( 2- 163 4)4+ 7 A2 (-0 L2z2  0 ~ L

A2 2

+ ( L4- -1 L 3.Z+ L2Z2)(- (24+X)JXZ8z 6 2

+ -- 7 ( 1 4Z4_3 Z3 373217 L7z+ 3 01 L )X8Z.
c 1 6-L 7 2S 240 L6210- 2240

24A4~ 2
+ -- (12L2Z4-28L 3z3+ Y- L L 0 L6)

3 15 9

+ 2~(6L2z2-6L3z+2L4)X4Z-7

245

3Z4 4ZA1 )523)16 6z +9L)X4 Z-
+ ~ (426L -1096L z+'4~2 L 15
CY37

(61
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3. Temporal Moments and Numerical Results

In this chapter, we give the physical meanings to those moments.

The first moment and the second central moment have the physical signifi-

cance as the mean arrival time and the mean square width of the received

signal. Then the skewness and kurtosis are defined in terms of the second,

third and fourth central moments. These quantities are used to describe

the rough shape of the signal. In order to get more concrete understanding,

we assume that the turbulence has the power spectrum introduced by

Shkarofsky. Then two sets of parameters are used to obtain the numeri-

cal results. These parameters describe the geometry and content of the

medium. All of them are stated in Section 3.1.

3.1 Mean Arrival Time and Mean Pulse Width

The first moment and second central moment have been evaluated and

discussed by many papers in the past [Mark, 1972; Yeh and Yang, 1977c;

Liu and Yeh, 1977; Yeh and Liu, 1977b; Yeh and Liu, 1979]. The first

moment represents the time position of the energy weighted by the inten-

sity distribution. Therefore it is just the arrival time of the signal.

Here we rewrite the first moment expression in equation (54) and denote

ta as the arrival time of the signal. So we have
6a

A2

t M(1 )(z)/M( 0 ) Z/vg (2Lz-L2)X2Z5/2 (62)ta 4 c (

where we have replaced cZ1/2 by v , the group velocity. Obviously theg

first term in the equation above represents the arrival time tf there

were no random irregularities in the medium. The second term is the

excess time due to tispersion and random scattering. Here we have to

note that A2 is always negative, then the excess time is always positive.
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Since the second term depends on X2 , the excess time decreases rapidly

as the carrier frequency increases.

Now for further calculation, we introduce a power spectrum fir the

random turbulence which was presented first by Shkarofsky (1968]:

( 0)(p-3)/2 3( 2  )

(K) (2KZ) 3 1 2 K (p 3 )/ 2 (020). ( 0•V•.)p 2  •

(63)

where K is the Hankel function of imaginary argument and K0'l/L 0 . The

quantities L0 and t0 are the outer and inner scales, respectively. a 2

is the variance of the relative electron density fluctuation. The two-

dimensional correlation function corresponding to the three dimensional

spectrum defined by (63) is given by

2r(K0•'•7+ ")(P-2)/ZK (KOr0•+o)a 2
A(Q) - (p-3),' 2K (*'2)/2~ V~i7

IC0 (K0 L0 ) (P 3 )/2K !2(KOZO)

(64)

When AW(0) is expanded as in equition (37), the coefficient An, n-0,2,4,

... etc., can be easily obtained from the relation An- n n! n 0) '

yielding

A0 - /2•'04K 2 K(p- 2 )/ 2( 0)/K(p- 3 )/ 2(K0t0)

(65)

A2  - _Ko/2L•a 2 Kp (KOZO) (p-3)/2(0)

(66)

A• / • o2 (OCOZ0) (67)"A,4  V'K0
3/25 ZOT K (p-C /2( 0 /K(p -3 )/ 2

----------- ____ -]-- - - - - - -



A6 K .- KOZ5O.2)0 /K.KK (p -8)/ 2 (C0 0)/K(p- 3 )/ 2(O0IO)

(68)

A8  2 K (p-1 0 )/ 2 (KOLO/K(P-3)/2(KOO)

(69)

For numerical results, we take L0-1O kilomecers and Z0'l0 meters

and a&2-0.1. Furthermore we use two sets of parameters which are listed

as follows:

Model 1 Model 2

Plasma frequency f 10 MHz 50 MHzp

Distance z 500 km i000 im

Width of random
irregularity slab L 200 km 500 km

where Model 1 corresponds to conditions that can occur naturally in

the equatorial ionosphere and Model 2 corresponds to conditions of an

ionosphere disturbed by nuclear explosions. £n our calculations the

carrier frequency f will be varied. The width of the impressed pulse

is To and is also varied such that f To -100, whic,, is consistent withc

the assumption made in the derivation of the temporal moments in Section

2A4.

In Figure 2 we present the numerical results for the arrival time.

The excess time, t a-z/v , is plotted as a function of the carrier fre-

quency for both Model 1 and Model 2. Except in the region f <300 MHz

in Model 2, these two straight lines in this figure show that the excess

-4times are proportional to f in both models. The little digression atC

low carrier frequen,'y end in Model 2 comes from the failure of the approxi-

mation Zl.
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Now let's look at the second central moment given by equation (59).

It has been identified earlier as the mean square pulse width of the

signal. Denote the square root of it by T. So we have

.(2  A0 L 4A4
----- + 4- X2Z-3--- (3Lz 2 -3L 2z+L 3 )X2Z-

c
A2

2  2
+ LZ- LZ 8 (70)

It is easy to recognize that the first term of the expression above

is the original square width. The other terms contribute to the broadening

of the signal due to random scattering and dispersion. But in equation

(70) the distortion terms that come from the high order dispersion are

absent. The reason for this is that we have neglected g 2 n
2 term and all

higher ones in equation (49). Actually, the general expressions (47) and

(48) contains the effects due to higher order dispersion. If in those

terms we take R22 term in equation (49) into account for the calculations

of M(I) and M(2) , an extra term (z 2 /c 2wc 2T 0
2 )X2Z- 3 must be added to the

right hand side of equation (70). This quantity describes the signal

broadening if there are no random irregularities in the medium. Using

the numerical values in either Model 1 or Model 2, we find this quantity

is much smaller than any distortion term in equation (70) due to scattering

and hence the higher order dispersion term can be ignored.

The dependence of the normalized mean pulse width T/(T 0 /2) on the

carrier frequency is shown in Figure 3. In the frequency range we con-

sider, when the carrier frequency is larger than 500 MHz for Model 1

and that is larger than 10 GHz for Model 2, the first term in equation

(70) dominates and we can neglect all the broadening effects.
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In Model 1, on the other hand, if the carrier frequency is between

100 MHz and 140 MHz, the term containing A4, which has f - dependence,

is most important. In some earlier papers [Sreenivasiah, 1976; Leader,

1979; etc.) AC(p) in equation (37) is approximated by A0+A2o2 . With

this approximation, they would miss the A4 term which happens to be

dominating under the condition above. Then their results will be in

error when applied to our problem. In Model 2, when the carrier fre-

quency f is such that 100 MHz < f c< 1 GHz, the last term in equation

(70) is most important and we can approximate T2 as

A2
2  L

T = 3 8 (71)

-8

which has f c dependence. Note that under this condition, the noiriralized

mean pulse width T/(T 0/2), is proportional to fc-3 since in all computa-

tions we assume wcT0 -100.

3.2 The Third Moment and Skewness

Let us rewrite the third central moment given by equation (60) as

-•(3)()M0 3z -/_A
(R(3)(0) -( XZ -5/2- - (2Lz-L 2 )X 2 (24+15X)Z- 9 / 2

c c

6cA6

---- (12Lz 3 -18L2z 2 +12L3z-3L 4)X2Z-1p
w

A2A4 1
- --T (12L2z3-22L3z2+lSL 4z- 18.-L5)X4Z-13/2

c

A23
A2 _ 1 L3 z 3 - 4Z2+ 12 (7

4 L • L20 L6 )X6 Z-1 5 / 2  (72)

The first term on the right hand side of (72) comes from dispersion

and all the remaining terms from random scattering. Note that A2 and A•.
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are always negative and A4 is positive. This implies that the third

central moftent is always positive. Physically, this means that due

to propagation effects the pulse becomes asymmetrical with a trailing

edge longer than the leading edge. If under certain conditions the

thled central moment becomes large, the received pulse must be then

stretched to give a long tail. Therefore, the value of the third

dentral modent is a measure of asymmetry of the pulse relative to the

arrival time.

In Figure 4, we present the dependence of the third central moment

on catrier frequency for two models. In Model 1, when the carrier fre-

qpncy fC is larger than 3 GHz, the first term in equation (72) dominates,

so that

R(3) (0) 3z xz-5/2
W() z/M(°

2c

indicating that the dispetsion is more imporLant and the third moment

-4.
has f dependence. When f <1 GHz, the third term dominates,

-6cA6
R (z)/M (0) .. (12Lz 3-_8L2 z2+I2L3z-3L4)X 2Z_1 1 /2

C

indicaeing that the random scattering is more imprortant and this moment
-8

is proportional to f . In Model 2, when the carrier frequency isc

above 10 GHz, the term owing to dispersion effect dominates again.

But when f is below 10 GHz, no term can always dominate.
c

Let ds now define the skewness, s, through the following relation:

M( )(z)/M(O) - ST3  (73)

The value of s is a measure of the extent of the signal asymmetry. If the

signal intensity distribution is symmetric about the arrival time, s is
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zero. Roughly speaking, larger s means bigger relative difference of

the stretched lengths between the trailing edge and the leading edge.

In Figure 5, we show a dibtribution with an exponential decay in trailing

edge and a Gaussian decay ý.n leading edge. This distribution has skew-

ness s-l.03. If any distriLution has s value much smaller than unity,

we may conclude that any of the following three possibilities may happen:

1) the trailing edge decays faster than the exponential decay; 2) the

leading edge decays slower than the Gaussian decay; 3) both of above.

With the distribution shown in Figure 5, this comparison of the s values

will give us a coarse idea about the shape of the received signal.

The dependence of skewness on the carrier frequency is shown in

Figure 6 for both models. In Model 2, when the carrier frequency f
c

is below about 800 MHz, s has nearly a constant value of 2. When f

is between 1.5 GHz and 10 GHz, 9 is proportional to f -5 and when fc c
-1is above 15 GHz, s is a linear function of f c In Model 1, except

the horizontal part, the curve is roughly parallel to that of Model 2.

When f is such that 200 MHz<f <2 GHz, s is proportional to f -5 andc -- c- c

when fc is above 4 GHz, s is inversely proportional to fc again. Note

that if the carrier frequency is above 500 MHz for Model 1 and is above

3 GHz for Model 2, the values of s are much smaller than 1. So we can

say in those frequency ranges the received signals must be less asymmetric

than the distribution shown in Figure 5, if by some other means we can

make sure that the signal is in a single clump.

3.3 The Fourth Moment and Kurtosis

The formula of the fourth central moment is given in equation (61).

Note that since every term in the right hand side is nonnegat.ve, the

fourth central moment is nonnegative as it ýhould be. Again. the first
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term is the original fourth central moment and all the others come from

( the propagation effects due to dispersion and random scattering. We

plot M(4)tz)/M(0) as a function of carrier frequency in Figure 7. Quite

similar to the situation of the second central moment, when f is above
c

1 GHz in Model 1 and is above 10 GHz in model 2, the first term in equa-

tion (61) eominates and we can omit all the propagation effects. On

the other hand, in Model 1 when f is below 500 MHz, the fourth central
c

-10
moment is proportional to f and it can be approximated by the single

c

term containing A8 . In model 2, when the carrier frequency is between

200 MHz and 1 GHz, this moment is roughly proportional to f , i.e.,
c

the term including A24 is most important.

Now we define the kurtosis, denoted by K, from the following

rela.tion:

M (z)/M - rT(K+3) (74)

where T is the mean pulse width defined before. The kurtosis is a di-

mensionless measure of the distribution concentration extent. For the

distribution shown in Figure 5, the value of K is 2.94. If any other

one clump distribution has kurtosis value less than 2.94, it must be

more concentrated than the distribution shown in Figure 5.

In Figure 8, we show the dependences of K on the carrier frequency

for both models. Note that both curves have the same shapes as the cor-

responding ones in Figure 6. Notice also that K is always larger than 0,

which is ths: case without any propagation effect. In Model 2, when the

carrier frequency is below 3 GHz, K has nearly a constent value of 30.

When the carrier frequency fa above 700 MHz for Model 1 and is above

4 GHz for Model 2, the values of kurtosis are less than 2.94. This

4.{ !
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implies that in those frequency ranges the received signal intensity

must be more concentrated. So we can conclude that in those frequency

ranges the signal must decay faster than the exponential decay on both

sides if we assume the received signal is just in a single clump.
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4. Description of the Signal Tail

In many applications we are not concerned vith the detailed and

exact shape of a propagating signal, such as in binary conmmunication.

The important thing we like to know is whether an error will be committed

_E in the decoding process owing to the distortion of the signal. From the

results in previous chapters, we know the distortions due to propagation

effects can be described in two separate ways. One of them is the broadening

of a pulse. The other is the asymmtry of this pulse, which when trails-

mitted was originally symmetric. In this latter aspect, we find the

disoredsignal always has a longer trailing edge. When serious, the

0 received signal cannot be contained in its original bit, it will extend

its energy into the next bit or even the third bit. This may produce

errors in the decision making process for the neighboring bits. Since

in a binary communication link, we mainly worry about the possibility

of committing the errors, it is important to estimate the energy quantity

which is extended outside of the original bit itself, especially in the

trailing edge.

We introduce two theorems about moments first in this chapter. Then

* these two theorems will be used tc give an upper bound for the signal

0 energy outside some time interval from the arrival time in the trailing

edge. The parameter values of those two models in the last chapter will

be used again for the numerical results.

4.1 Two Theorems About Moments

Since we are dealing with the normalized signal intensity distribu-

tion, this distribution density as a function of time is always positive

and the total distribution can be normalized to unity. These properties
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satisfy the conditions for a function to be a probability distrtbution

density function. So, any theorem about the moments of the probability

distribution as a function of random variable can be cited in our re-

search, if these moments are defined in the same ways as the temporal

moments. Here let us introduce two theorems about the moments of the

probability distribution. These two theorems can be found in books on

statistics, for example, the book written by Mises [1964]. In the fol-

lowing statements, we will not distinguish the probability distribution

from the signal intensity distribution, since the results have no dif-

ference.

Theorem 1: If two distributions with distribution density function I(X)

and I'(x) have the same moments up to the nth order, the

graphs of the corresponding cumulative distribution functions

E(X) and e'(X) must have at least n "points of intersection".

Note that the cumulative distribution functions and the distribution

density functions are related by

E(x) 10 I(') dx'

Here we have to give a definition to "a point of intersection". We

define "a point of intersection" as that inside some closed interval

of X where c(X)=E'(X) and just outside this interval E(X)-e'(X) has

opposite signs in the positive side and negative side.

In this report, we will not try to prove this theorem. But from

Theorem 1, it is easy to derive the following Theorem 2.

Theorem 2: Suppose there exists a distribucion I(X) which has an

m-step increasing cumulative distributicn function c(X)

and has first 2m order moments R(O) -(l) -(2, -(2m-l)



If I'(x) is any other distribution with the same 2m moments

as above, then the graph of its cumulative distribution

function e'(X) passes through each "step" and each "riser"

of this m-step function c(X).

As an example, we show a 3-step case in Figure 9. In this figure, for

the purpose of our application we have replaced the variable X by t and

denote the positions of the "risers" by tj, t 2 , t 3 and the heights r-

the respective riser by el, c2, C3. Note that El, c 2 , E3 must be posi-

tive and the moments up to fifth order are concerned. Since in the

statements of Theorem 2, we have used the central moments to specify

the m-step increasing function, the origin of the horizontal axis is

the arrival time of the signal.

But for given moments j(0) j(l) ,(2)......, ( such an

m-step increasing cumulative distribution function can exist only

when some conditions are satisfied. For the cage m-3, these conditions

are

ii(0) 0 o, i(0) R(1) R(O)(0) ()(2)

R(l)-q(2) > , R(l) R(2)-R(3) > 0

R(2) i(3) ii(4)

4.2 Application of Those Theorems

4 In the case of a 3-step function stated above, for the purpose of

calculating the positions and heights of "risers", i.e., t1, t 2 , t 3 ,

C1, C2, C3 (6 unknowns) in Figure 9, the quantities of moments up to

4 fifth order (6 knowns) are needed. But, if we have the information -

only up to fourth moment, we still can cc.nstruct a 3-step increasing

qI7 F
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ti ta ts

Figure 9. A 3-step function and a increasing curve whose
corresponding distribution density functions have
the same moments up to fifth order. c i represents
the height of the "riser" at ti, ii-,2,3. Note
that £1+C2+E3-1. In this case, these two curves
have at least five "points of intersection". Since
the height between point P and Q is the fractional
signal energy beyond t 3 , C3 is an upper bound of this
fractional energy.
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function except that any one of tj, t 2 , t3, C1, C2, E3, must be left

undetermined. This undetermined one can be chosen arbitrarily within

some restricted ranges.

The conditions under which such a 3-step increasing function can

exist have been listed at the end of Section 4.1. They can be satisfied

if the cumulative distribution function of our signal Intensity distri-

bution is increasing (not constant) at least at 3 points. This is true,

since the signal intensity is monotonically increasing at least in some

range of time. The proof for the satisfaction of those conditions can

be seen just by reviewing the process of deriving those conditions,

which we omitted.

Since we are trying to estimate the signal energy outside some

time interval from the arrival time in the trailing edge, among tj, t2,

t 3 , 61, C2, E3 we will let t 3 unfixed. Now let us compute tj, t2, F1, £2,

£3 in Lerms of t 3 , T, s, K. The starting point of the calculation is

the equivalence of those moments between our signal intensity distribu-

tion and the distribution with 3-step increasing cumulative distribution

function E(t). The corresponding distribution density function I(t) of

E(t) can be expressed by a sum of delta functions as

I(t) - 416(t-tj)+E16(t-tý)+E(t-t3) (75)

Then we have relations as follows:

-(0) R(0) = Et+E:+

I- (76)

I •~~~~~~~(1)/ -U) t,_t+t -,.
4 ~~~M /MR") t£:~+

-0 (77)

7/



•(2)/•(0) . E!tI 2+E 2 t 2 2+E 3 t 3
2

- ¶2 (78)

i(3)/-(O) . Ct3+e2t23+

o ,3S (79)

- r4 (K+3) (80)

From equation (75), (76) and (77), it is easy to solve cl, e2, E3 in

tetms of t1, t 2 , t 3 . Thm results are

T 2+t2 t3
E1 - (81)

(t3-tl) (t2-tl)

T2+tl t 3
C2 "(82)

(t 3-t 2) (tl-t 2)

T2+t, t 2
E3 (83)

(tl-t3)(t2-t3)

Substituting these results in equations (79) and (80), we can obtain the

expressions for tj, t 2 in terms of t 3 , T, s and K. They are as follows:

-, 2 " (84)

t2 - /•" ; (85)

2

where

S2 t 3 (K42)+T 3 s-t3 2 ST

p -(86)
T7-t8 3 -t3'
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T2 [T ?s2 -t 3 Ts-T2 (K+3)+t 3
2 ]

S~2
T2 +t 3 TS-t 3

Now we have constructed the 3-step increasing function e(t). Since

we know the cumulativs distribution function E'(t) of our signal intensity

distribution is always increasing and must have at least 5 "points of

intersection" with c(t), the graph of c'(t) must pass through the third

"riser" of c(t) at t3 (see Figure 9). Furthermore, since the height

from this intersection point to the top step is the fractional signal

energy beyond t 3 , E3 is just an upper bound of this fractional en y.

In a binary communication, we can always put t 3 at the boundary of a bit

and then compute the fractional signal energy extended into the neighboring

bits in the trailing edge. But, we have to remember, t 3 can be chosen

only within some ranges. These ranges can be found from the conditions

which require that t1 and t 2 must be real and el, E2 , C3 must be real

and positive.

4.3 Numerical Results

In this section, we use the model parameters given in Section 3.1

once again. We plot the curves of C3 as a function of the carrier fre-

quency in Figure 10. Two values of t 3 are assigned, one at To, the other

et 2T 0 . The shapes of those four curves are quite similar. In both models,

E3 asymptotes to about 0.1 for t 3-T 0 and to about 0.005 for t 3-2T0 . Also

we find when the carrier frequency is larger than 1 GHz in Model 1 and

larger than 10 GHz in Model 2, £3 is approximately equal to the individual

asymptotic value. These two values of the carrier frequency coincide

roughly with those beyond which the propagation effecta on th,- r,•1 ..
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width can be neglected, as shown in Figure 3. Also from Figure 6,

when the carrier frequencies are above those two values in two models,

respectively, skewness values are less than 0.001, which is much smaller

than that of the distribution in Figure 5. So ue can conclude that the

signal shape is nearly unchanged for the carriet frequency range above

those two values in two models, respectively, Really, for the undis-

torted signal, the exact fractional energy beyond To is 0.023 and thait

beyond 2T 0 is 5xlO5 , which naturally are smaller than their upper bound

0.1 and 0.005 given above, respectively. Because we have the restrictions

on the choice of t 3 , we can not complete those curves in Figure 10 when

the carrier frequency is below some value.
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Figure 10. An upper buu•,, o2 the fractional energy beyond
t3, Es as a fiaiction of the c3rrier f-equency.Two values of tj are assigned.
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5. Summary and Conclusion

Starting from the Helmholtz wave equation (10), we derived an

equation (17) for the two-frequency two-position mutual coherence

function r(p). In order to compute io, ri, r2, r3, r4, a set of

equations for Wn and W n' were derived. Fo, ri, r2, r 3, P4 were eval-

uated and then temporal moments and temporal central moments up to the

fourth Order were computed. Two models for the geometry and ionospheric

parameters were used to obtain numerical results.

We next consider a narrow-band Gaussian envelope carrier signal

being impressed at z"O. After propagating through a turbulent plasma,

owing to dispersion and random scattering, this originally symmetric

signal is broadened and becomes asymmetric. The trailing edge is longer

than the leading edge. From the information we obtained, we can not tell

whether the received signal is just in a single clump. But if we can make

sure of it by some other means, we compare the skewness and kurtosis values

of the average signal intensity distribution with those of the distribution

shown in Figure 5 and then get a rough ide.n about the shape of the re-

ceived signal.

The results also showed the dominating propagation effect between

dispersion and random scattering. As the arrival time and pulse width

are concerned, the random scat. -ing effect is more important, since the

propagation effect will "e much smaller if there are no random irregu-

larities in the medium. As far as the signal asymmetry is concerned,

the propagation effect mainly comes from dispersion in high frequency

part and from random scattering iv, low frequency part in the carrier

frequency range we considered. Finally, for the extent of signal con-

centration, random scattering effect is dominating.



Although we can not know the exact shape of the received signal

intensity distribution, we can find an upper bound for the fractional

signal energy beyond some time distance from the arrival time. In a

binary communication, this information may help us to predict the errors

in a decoding process. But to do it, we need more investigations.
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1. Introduction

As a radio wave propagates through the ionosphere, random varia-

tiotns in the electron density will cause the wave to fluctuate. These

fluctuations are called scintillations. Scintillations are especially

apparent in regions called electron bubbles. Electron bubbles are

regions in the ionosphere where electron density is very low. Also

very sharp electron density gradients are present.

In this report I will make a deterministic study of pulse propa-

gation through a model electron bubble at several different carrier

frequencies. Because an electron bubble is a dispersive medium, one

would expect a pulse propagating through a bubble to be distorted.

I will obtain a graphical relation~ship between the carrier frequency

and the pulse distortion. To obtain this relationship I will calcu-

late the moments of the pulse envelope after the pulse has been trans-

mitted through an electron bubble.



2. The Parabolic Equation

Microwave propagation through an electron bubble is a strong

fluctuation problem because the log amplitude variance is greater

than (.2-.5). The parabolic equation method [Tatarskii, 19711 will

be used to study this problem.

Figure 1 shows the geometry of the problem. A wave propagates

from z-O to z-Z0 through an electron bubble. In this report, the

geometry is considered to be two dimensional so that there is no y

dependence.

2.1 Derivation

The dielectric permittivity at any point r-(z,x) is written as

an average or background value plus a fluctuating part.

r (r) - <cr (z)>(l+El(r)] (1)

The average wave number is defined to be

k 2 m w2U0E0 "Er(z)> (2)

k2 k0 <E r(z). (3)

The source free Maxwell's Equations are the starting point for the

derivation of the parabolic equation.

VŽ4E(r) - -iwUij)H(r) (4)

-7<H(r) - i,u (r)E(r) (5)

Taking the curl of (4) gives

S-i) (6)
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Substituting (5) into (6) results in

VxVxE(r) - -iwp 0(iw (r)E(r)) (7)

Using (3) and the vector identity 7xVxAigrad div A-V 2 A gives

grad div E(r)-V 2E(r) - k0 k r(E)E(r) (8)

If the irregularities are large compared to the signal wavelength

then div E(r) - 0 [Tatarskii, 1971]. Equation (8) reduces to

7 2E(r)+k 0
2 Er(D)E() - 0 (9)

The x component of the electric field E(E) can be written as

E (r) - U(r)eik (10)

-iWtwhere e dependence is understood, propagation is along the z direc-

tion and U(f) is complex. From (1)

k0
2E (r) k 2 (l+C1(L)) (11)

Substituting (10) and (11) into (9) gives

V2U(r)e kz'+k2(i+FI(r))U(r)e - 0 (12)

or

"- U(r)e 4 k -- r U(i)eikz + 2 U(r)e

+k2U(E)eikz+k2cl(r)U(r) - 0 (13)

also

ikz ikz a2 ikz a ikz
.-:7 U(r)e e i U(r)+21ke 7- U(r)-U(r)k'ei(4

9•4



Substituting (14) into (13) gives

a2 ikz e3 LikZ ikz a22 kz
7.7 U(r)e U() + e z-U(r)+21ke U(r)

-k2U(r)eikZ+k2U(r)eikZ+k2El(r)U(r)eikz - 0 (15)

Simplifying (15) results in

E2U(r)+2ik Tz U(r)+k2¾1 (r)U(r) - 0 (16)

The scale size . of the medium is defined to be the average distance

over which the fluctuating part of the dielectric permittivity remains

correlated. If »>>X then

Ik - U(r)j >> 1 U(r) (17)

(Tat rskii, 1971]. So 72 can be replaced by the transverse Laplacian

32 +2 (18)

and (16) becomes the parabolic equation.

V 2U(r)+2ik !- U(r)+k2 Ei(r)U(r) - 0 (19)
T -z

The strong fluctuation problem is reduced to solving the parabolic

equation for a medium with EI(r) variations. These variations can

be treated stochastically where El(r) is a random process. However

in an electron bubble medium, very sharp electron density gradients

occur. As will be seen in the next section, these will lead to large

fluctuations in el(r). In this case £j(r) will be treated determinis-

tically.

9 5



2.2 Determination of el(r)

Recalling Equation (1)

r(r) - <r (z)>[l+Ej(r)]

where:

E r (r) is the relative dielectric permittivity at any point r

<C (Z)> is the background relative dielectric permittivity forr

a height z (the value at the edge of the bubble).

c1 (r) is the varying part of the relative permittivity.

The background relative dielectri': permittivity is given in terms of

the background plasma frequency.

w 2(z)
<C W> (20)r

N0 (z)e
2

p0 2 (z) - (21)

N0 (z) is the background electron density for a height z.

e is the electron charge.

m is the electron mass.

E0 is the free space dielectric permittivity.
The relative dielectric permittivity at any point r is given by

S 2 (r)
SCr) - (22)

N (r) e 2

w 2 (r) M0 (23)

where N(r) is the electron density at any point r

N(r) - N0 (z)-AN(r) (24)

,96



6N(r)
N(r) N0 (z) [1 - N0- (25)

Rewriting w 2 (r) in terms of w 2 (z)
p PO

No(z) AN(r)
Wp2 (r) ic0  e

2[l- No(z)] (26)

or

AN(r)
w 2 (r)-- W 2(z)[1 - N--]-- (27)

Substituting (22) and (20) into (1) gives

w 2(r) w 2 (z)
1 - z PO "[l +el(r)] (28)

Substituting (27) and (21) into (28) and solving for ej(r) results in

W 2(z) 6N(r) w 2 (z)
( - ([-1(z)] 1-AP1 (29)

So the fluctuating part of the relative dielectric permittivity is

dependent on the frequency of the wave, the background plasma fre-

quency and the fluctuations in the electron density. In an electron

bubble, the electron density fluctuations will be spiky, thus jl(r)

cannot be treated as a statistically homogeneous random process. So the

statistics of z (r) cannot be uniquely determined by its mean and auto-

correlation (or by its power spectrum). Thus a deterministic model is

used to study wave propagation in a medium of this type.

b~V



3. The Electron Bubble

3.1 The Bubble Model

In several observation programs near the magnetic equator, scintil-

lation at Gigahertz frequencies has been related to the development of

electron bubbles. Soon after sunset, thin layers of irregularities

develop below the F layer and quickly start to rise. The irregularity

layer thickens and develops into a region of depleted electron density.

These regions are called electron bubbles.

In-situ rocket and satellite measurements are used to provide

further information about electron bubbles. Specifically, in-situ

data measured by McClure et al. (1977) was used to develop the model

of the bubble used in this report. The data is shown in Figure 2.

Figure 2 shows electron density measurements along a satellite path

and clearly indicates irregularities and sharp electron gradients.

I will use the model developed by Wernik, (1979). Wernik in modeling

the bubble assumed a two dimensional model. Also he a,3umed the

horizontal variations of the electron density in the bubble to be that

given in Figure 2 at every height z. The background density (the den-

sity of the background ionosphere) is assumed to follow a parabolic

profile.

No(z) a NM [l-(Z-ZM) 2 /H0 2]G (30)

where iM is the maximum electron concentration at height ZM and H0

is the scale height. During the course of bubble development, its

leading edge becomes sharper while its trailing (lowe.) edge becomes

more blunt. Wernik defined two stages of development, the initial

stage and the developed stage. G is a weighting function which takes

1
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the different stages into account. In this thesis I will use the

developed stage. The weighting function G is shown in Figure 3 for

the developed stage.

To calculate the electron density at a point r_-(z,x) inside the

bubble, the following equation is used

AN(r)
N(r) " N0 (z) - z) N0 (z) (31)

where N0 (z) is given by (30) and bN(r)/N 0 (z) is obtained from Figure 2.

In order to obtain the solution to the parabolic equation, the

fluctuating part of the relative dielectric permittivity must be solved

according to Equation (29). When f, the frequency of the wave is much

larger than the plasma frequency f , which is always the case in thisp

thesis, then (29) can be simplified to
80.6(10-6 )AN(f)

l(r) "fz (32)

where LN(O)-N 0 (z)-N(r) and is in electrons/cm3 and f is in MHz.

3.2 Program SHEET 1

Wernik (1979) developed a program called SHEET to model wave

propagation thro'-gh ar eIectron bubble. I have rewritten and revised

his program to make it run more efficiently. My program is called

SHEET 1. SHEET I solves the wave propagation problem in the electron

bubble model described in the previous section by obtaining solutions

for the parabolic *quation. The following analytic solution to the

parabolic equation was used by Wernik in his SHEET program and is used

in my SHEET I program.
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The paraholic equation (19) was obtained in uection 2.1.

''TU(r)-2ik U(r) + k•L~(r)U(r) - 0

Since the bubble model used in this report is 2 dimensional, r_(zx) so

V 2 2/ýx2 (33)
T

thus (19) reduces to

-2ik; U) + 7x7 U(r)+k 2 cj(E)U(r) -0 (34)

The following substitutions are made

t a kz b kx (35)

Substituting (35) into (34) gives

SU~tb) + i ý2u(t b•' +"" 2 bb + I cj(tb)U(tb) - 0 (36)

The entire medium ia partitioned into a grid as shown in Figure 4.

The step sizes in (z,x) space are P and M. These must be changed

into step sizes in (t,b) space by

T P k
(37)

H=M k

To solve (36) numerically, the implicit Crank-Nicholson difference

scheme is used. This scheme uses the following analog to the second

derivative

I n+1 2Un+1 n+i n n + n
)7L U(t,b) [(U - U + U ) ÷ (-o)(U+-2U+ _I)] (38)

j J-1 j j-1
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Figure 4- The medium partitioned into a grid.



Kii and the following analog to the first derivative

U(tb) Un+l - U )/ (39)

where

j a 0,,2,..., J

n 0,1,2,..., N

o * 1/2

J is the number of steps in the b direction (also in the x direction)

and N is the number of steps in the t direction (also in the z direction).

The term ej(t,b)U(t,b) is expressed as

n+l n

2 au J (1-U)U•] (40)

The f function is defined to be

fn n+l n) / 2  (41)

SubstltutLing (41), (40), (39) and (38) into (36) gives

Ir nl it ir -n n+1 iT ,n+l -it nl iT (1-a)

2H- J+l 2 j + 12F7, - ~ (+ H

i* U n n it f 1_0) Un
- -(1-I)fU - (1-2 )2 (42)

* A problem occurs at the bouL.daries of the bubble where the equation

depend on UO and U+. "False" boundries are set up with U0-O and

nU U+0. The effect of these bounraries does not penetrate deeply into

the field.
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Equation (42) can be expressed as a matrix multiplication

Bn7Un+l - (,n -An),, n-0,1,...,N (43)

so for each step in the z direction there is a matrix An and a

nmatrix B

U0 U

B n Bn-A n (44)

UJ J

The matrices An and Bn are tridiagonal. Only the main diagonal and

the diagonal on each side of the main diagonal have non-zero elements.
Sn+1 +I, Uj~l n nU +

The reason for this is because (42) depends only on Uj 1 , U U Un , n n

and Ujl. The elements of the matrices 6're found from (42)

n ii-i n

Bn n ii(5J+l,j - -jj+1 " , (46)

n -i inA J~j H2 +• f (47)

An A n (48)j+lij j,J+l H

for J-0,1,2 ...... ,J

Starting from (43) U is solved

BnUn+ 1 (Bn,-.An)Un

nn-i n nU - [-(Br) rA n]U (49)

4 (1')i
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U n+l =Un -rX n (50)

where

n n)-i nn (1
X- (B) AnU (51)

or

oB~xn A~nU (52)

Equation (52) is solved in SHEET 1 for Xn using Gaussian elimination

via the Thomas algorithm [Ames (1969)]. Since Bn is tridiagonal,

Equation (52) can be written as

aa Xj-l+cCjx +bb x J+1 -d

cclxl+bblx2 - dl (53)

aajx3j+ccjxJ -d

where:

n
aaj, ccj and bb are elements of matrix B , and

'X0 •X 0O
S~J+l

+j C aU n +bUn
di a J- i + ci + jj+1

dl =ClUl + blUn (54)

n n
d ajUj +cU

where:

aj, cj and b are elements of matrix An, and Un-Un _0.
0 j+1

The Thomas Algorithm is used to solve (52). A solution is

assumed

xj -a J+ixJ+l+ J+l (55)



where:

a -bb /(aa a +cc (56)

J~ in dJaa

S(d -aaj)/(aajaj+ccj) (57)

a2 -bbl/ccl $2 " d 2/cci (58)

since

x - (59)

x- a%+ (60)

x" (dj-aa8jj)//aajaj+cc) (61)

After the X matrix is solved, (50) is used to obtain the solution

of the parabolic equation at the next t (or z) step.
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4. Moments

4.1 Dtfinition

in this Lhesio, pulses of three different carrier frequencies

aiid two different pulse widths are propagated through an electron

bubble mediut. In order to analyze the output pulse, the method of

temporal moments will be used. Specifically, the first four temporal

m omtnts will be used to givt a description of the output pulse envelopn.

The pulse incident on the electron bubble can be described as

Pi(r,,) f { F(w)e-i( t- )dw (62)

Where F(w) Is the frequencv spectfu% of the pulse. Assuming propagation

parallel to the z axis, the pulse at a receiver at (z 0 ,x 0 ) is

Po(Zoxct) - { F(w)U(zo'x',w)e i(wtkZ)dw (63)

where U(zo,xo,w) is the parasolic equation solLtion. The output pulse

can alternately be described as

p0 (z 0 ,x 0 ,t) - A(z,x,t)e i(t-z/c) (64)

A(z,x,t) is the envelope of the pulse and w is the carrier freouency.C

The rith temporal moment is defined as

M(Z) j A*(zx't)tnA(zx't)dt (65)

wherE:

nwOl,........

1 "P



4.2 Physical Significance

When n-0 Equation (65) becomes

M0 (z) - IA(z,x,t)1 2 dt (66)

Equatior (66) is Ju3t the expression for the total energy in the pulse.

When ai-1, Equation (65) becomes

MI (z) m A*(z,x,t)tA-(z,x,t)dt (67)

-C

Equation (67) is the expression for the mean of the square of the

envelope. If Mj(z) is normalized by dividing by M0 (z), then an expres-

sion for the mean arrival time (denoted by ta) is obtained.
a

ta - Ml(z)/M0 (z) (68)

The mean arrival time can be used to calculate the delay caused by the

electron bubble medium.

When moments of higher order are needed, t is used to define the
a

central moment. The nth central moment is defined as

f n
M n'Z) f A*(zxt)(t-t a)A(zxt)dt (69)

The 2nd central nument is analogous to the variance in probability

theory. When n-2, Equation (69) (after normalization) becomes

M2 (z) M2 (z)
- M-t 2 (70)

MO(z) MO(z) a

r 2 is called tne mean square pulse width. T gives a measure of the

pulse spre.oding caused by frequency dispersion in the medium.
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The thitd central mothent iS written as

M3 () *(xt)(t-ta)3A(,xt)dt (71)

Thd skevness s is defined by

R3(Z)
a= s' 3  (72)

14d(Z)

or

ST 3 M 3 (Z./M0 (i) 3M2W (•)/(t0 (t) )2+2ta3 (7 3)
a a

The vaiue of 4 ia a measure of the pulse asymmetry. If a pulse is

petfectly sytmetric abdut the mean afrival time, the skewness Vill be

zero. In this thesiss if s is negatidej more of the energy in the

pulse is concentrated in the trailing edge of the pulse rather in its

leading edge.
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K5. Daca

In this section, I will calculate the moments of the pulse envelope

after the pulse has been propagated through the electron bubble medium.

Pulses of three different carrier frequencies and two different pulse

widths will be analyzed. The three carrier frequencies are 2.5 GI-z,

800 MHz and 500 MHz. The two pulse widths are 6.51 nanoseconds and

12.95 nanoseconds. For each of these carrier frequencies and pulse

widths, a receiver will be placed at two positions. The first is

x-.5.297 kcm. Note from Figure 2 that at x-5.297 km the bubble has

relatively constant electron density. The second x position is x-8.856 km.

At this x position, the bubble has a very sharp electron density fluc-

tuation.

~1I SHEET 1 is run nine times for each carrier frequency at each x

position to obtain the parabolic equation solution across the entire

pulse bandwidth. Linear interpolations are done to obtain the ampli-

tude and phase of the parabolic equation solutions between the SHEET 1

outputs. For the 500 MHz carrier frequency, additional SHEET 1 runs

were made because the amplitude started to fluctuate greatly at the

* lower end of the pulse bandwidth. Figures 5-16 show the intorpolated

parabolic equation solutions for each carrier frequency and each x

position. These Figures are essentially the transfer function which

describes the electron bubble medium. This transfer function is de-

pendent on frequency and on x.

Some of the input and output pulses are shown in Figures 17-23.

These Figures show the input pulse, the input pulse spectrum, the

input pulse envelope, the output pulse at x-5.297 kcm, the output pulse

envelope at x-5.297 kmn, the output pulse at x-8.856 km and the output
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pulse envelope for x-8.856 km respectively for the 6.51 nanosecond,

800 MHz pulse (one of the twelve carrier frequency and pulse width

combinations analyzed). In Figure 17 (the input pulse), the leading

edge of the pulse is in positive time and the trailing edge of the

pulse is in negative time. The pulse is centered at time zero.

Figures 22 and 23 clearly show an example of pulse distortion. In

Figure 22, the delayed mean arrival time (t ) is mar-ked. A pulse prop-

qagating through free space the same distance would be centered at t-0.

The mean arrival time is the excess delay caused by the electron bubble

mc..dium.

The normalized moments of the output pulse envelopes are plotted

versus frequency in Figures 24-29. Figures 24-26 are for the pulse

width equal to 6.51 nanoseconds and Figures 27-29 are for the pulse

width equal to 12.95 nanoseconds. The dashed lines are the data for

x-5.297 km and the solid lines are for x-8.856 km.
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b.0 na is

In s'ection 2.1 the fluctuating part of the relative dielectric

permittivity was derived as Equation (29).

,AN(r)

l-(W Po /W)~

As the wave frequency is made larger, c,(r) tends toward zero. Thus

for high frequencies the fluctuations in electron density will have

little effect on a propagating wave. The wave will propagate like the

medium is free space, However, at lower frequencies, the electron

density fluctuations will have a great effect. Also the effect will

be different for every frequency across the pulse bandwidth. Thus a

low carrier frequency pulse propagating through an electron bubble

medium will be distorted.

To analyze the results, the moments of the pulse envelope must

bu reIated to its fre:-quency spectrum. The moment theorem [Papoulis,

19b2) I , relates the derivatives of F('w) at the origin to the moments

of the tfme function. In this problem, a carrier frequency shifts

the frequency spectrum of the envelope to the carrier frequency so

the moments of the envelope will be related to the derivatives of its

frequency spectrum at thi carrier frequency. In addition to the

shifting, the frequency spectrum is also multiplied by a factor of 1/2.

The moment theorem which relates the derivatives of the frequency

spectrum to the moments of the pulse envelope is

2d " )

(74)
n- ) d- n7L,)



The frequency spectrum of the envelope is written in terms of a magni-

K tude part and a phase part.

FMw - H(w)e W(w) (75)

Since the pulse p0 (t) is real, H(w) is even and ,•(.,) is odd. H(,..)

and t(w) are expanded in a Taylor series about the carrier frequency

C

H(w) - 1 + + (76)

b
O(w) bl(w-w ) + - (w-w)3+ ... (77)

where

d2

Using the series representation for the exponential

4 +i•(•) -lb('uw ) + ib3  _ b))(78Te (w--). -d (,-w) - (H-,w)"

therefore

h- ~ib3 [

F()- [1 +'7 '. (w-wc)'-+ ... ] [l+ibi(u-wc) + iT.-"• •'"c) - .q-(Jc'

ibL•

4 or

w._ _



h2--b I
F(+l) l+ibi(w-,Aj ) + 2 (w-w )2 - ( "2b3 )( c3+

C 2: (W-c 3 (b 3-3h bj-3)( -wC(80)

The pulse is ,-ritten as an envelope function multiplied by a complt.x

sillusotd

+iw tC

pO(t) A(t) e (81)

so e _

- i(W-W 
)t4 CF(w) - A(t)e dt (82)

Using the series ceprese'.itation for the exponential gives

S-i(-11) 0t) n

F(w) - A(t) 7 n dt (83)
- m) .- nmO

integrating (83) termwise gives

(-i) n(w-•wn
F( M (84)n-0 n!'

and .3ibstituting (74) Into (84) results in

2dnF (• )nF (w) - Vi ' > ( -• (85)

nI dn n1.

Assuming M,-I and equating the terms uf (84) and (80) results in

b U- M - de~I~ : ( h)
d

d 2-H u.) ,,,,
h I= -m.,_ ' (c87')

d,,

M- -(bi -3) h:--b)

and duleining

t~lJ



V a tA(t)dt (89)

2 " (t-t ) 2A(t)dt (00)

6 f (:-t ) 3A(t)dt (91)

gives

14 dw

-d2H(w)ww112 C
dwz (93)

6 dOj (94)

Thus the delay is related to the slope u.! the phase function at the

carrier frequency and the pulse spreading is related to the curvature

of the amplitude function at the carrier frequency. The skewness is

related to the 3rd derivative of the phase function. Note that the

delay, pulsewidth and sk•:,.&ess defined above are slightly different

than the quantities defined in Section 4. The definitions above are

related to the envelope while the definitions in Section 4 are related

to the square of the envelope (since the pulses are real). In the

next several paragraphs, the above derivations will be used to qualita-

tively explain the output pulses due to several different transfer func-

tions. The delay, pulsewidth and skewness of the square of the envelope

are directly related to the delay, puilsewidth and 4kewne.s of the ,,nfv.E,)|)p

itself.
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According to Equation (29), one would expect pulse distortion to

become greater when the carrier frequency is decreased. Thus the pulse

width and the skewness should become greater when the carrier frequency

is decreased. That is exactly what is observed in Figures 25, 26, 28,

and 29 when the receiver is placed at x-5.297 km. But when the re-

ceiver is placed at x-8.856 km, something different is observed. From

2.5 GHz to 800 MHz the expected distortion versus frequency occurs. But

at 500 MHz the distortion becomes less. By studying ligures 12 and 16

one can see why the distortion is less at the lower frequency. In

Figure 12, the 800 Mhz phase transfer function, there is a non-linearity

near the center of the bandwidth. In Figure 16, the 500 MHz phase

transfer function, the phase is nearly linear near the center of the

pulse bandwidth. According to Equation (92), non-linear phase causes

pulse distortion because delAy is dependent on the derivative of the

phase function. Delay as a function of frequevcy (D(f) is written as

D(f) - df (95)df

If the phase is non-linear, some of the frequency components in the

pulse are delayed different amounts of time than other components.

Thus the pulse is distorted. So one reason the 800 MHz pulse is di--

torted more than the 500 MHz pulse is because the phase is more non-

linear near the center of the 800 MHz phase transfer function.

Figures 11 and 15 can be used to explain why the pulsewidth

decreases at 500 MHz for x.8 856 km. When the amplitjde spectrum

of the input pulse is multiplied by the transfer function of Figure 1i.

a large amount of negative curvature at the carrier frequency results.

However when the amplitude spectrum of the input pulse is multiplied

14.



by the transfer function of Figure 15, less negative curvature at

the carrier frequency results because in Figure 15 there is a large

amount of positive curvature which tends to cancel some of the negative

curvature of the input spectrum. According to Equation (93), the

pulsewidth is related to the negative curvature of the amplitude

function at the carrier frequency. Thus the output pulse due to the

transfer function of Figure 11 will be spread in time more than the

output pulse due to the transfer function of Figure 15.

Figure 12 can alsc be used to justify the large skewness value

at x-8.856 km for the 800 MHz carrier frequency. Since skewness is

related to the 3rd derivative of the phase function according to

Equation (94), the transfer function of Figure 12 would give rise

to a large skewness value because of the non-linearities in the phase

near the center of the bandwidth.

At first the above results might be considered disturbing because

Equation (29) predicts that the pulse distortion should rise as the

carrier frequency is decreased. However, more analysis could easily

rationalize the resuljts. If a receiver was placed at every x point

below the bubble and it a pulse was applied at every x point above

the bubble, on tne average the expected pulse distortion would occur.

In the real ionosphere, the electron bubble wculd be movJr.g

x.lative to the line of propagation. If a pu.1.se train was transmitted,

the delay, pulsewidth and the skewness of each successive pulse would

vary. But on the average, the delay, pulsewidth and skewnes3 would

rise if the carrier frequency of the pulse train was decreased.

In order to use this computer mode). to study this propagation

problem in greater detail, a receiver would have to be placed at

every x position. To do that would require a very large computer budget.
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Appendix A

The software procedure used to obtain the moments for a pulse

envelope is shown below. Each of the programs is explained and listed

in this appendix.

1. Program SHEET 1

This program numerically solves the parabolic equation for a

wave propagating through the model electron bubble. Program SHEET 1

is explained fully in section 3.2.

2. Program Pulse

This program computes the frequency spectrum of the incident

pulse from the time function. The frequency spectrum is computed

using the Discrete Fourier Transform via a standard decimation in

time FFT routine.

The pulse time function is set up in an array. The frequency

spectrum is computed using the DFT.

N-1( )mn

n-0

where

N - 8192

Pi(nT) w the pulse time function

m Ol,2,...N-1

T = sampling rate

The frequency spectrum is computed !or N values in the range mp-(0,2i)

radians. To obtain the actual frequency scale, the following relation-

ship is used

wT -
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So

Fi(mP) - Fi(mwT)

In this thesis, I will adjust T each time the carrier frequency is

changed so thac the 1024th point of the frequency spectrum array cor-

responds to the carrier frequency.

3. Program INTER

This program interpolates between the nine SHEET 1 solutions to

obtain a parabolic equation solution corresponding to each of the

points in the frequency spectrum computed by program PULSE. Two linear

interpolations are done, one for the amplitude and one for the phase.

4. Program MULT

This program multiplies the interpolated parabolic equation solu-

tions and the input pulse frequency spectrum to obtain the output

pulse frequency spectrum.

5. Program IFFT

Program IFFT calculates the output pulse time function from the

frequency spectrum using the inverse Discrete Fourier Transform via

a standard decimation in time FFT routine. The inverse DFT is given

by
2 rriN-1 i(N2)-

p0 (nT) I N • Fo(mo)e

where:

N - 8192

Sn 0,1,2....N-n

Fo(mo) - output pulse frequency spectrum
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po(nT) - output pulse time function

= T - sampling rate

6. Program ENVEL

Prcgram ENVEL finds the envelope of the output pulse and then

calculates the first four moments.

1
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PROGRAM SHEETI(INPUT,OUTPUT,ELFL, RESULT,PASS,DA2,
+TAPEI=RESULT,TAPE2=ELFL,TAPE3=DA2,TAPE5=PASS,
+TAPE6=OUTPUT)

************** ******************* ****** ******** **** * *********

C
C...THIS PROGRAM SOLVES THE PARABOLIC EQUATION NUMERICALLY
C...FOR A WAVE PROPAGATING IN THE IRREGULAR IONOSPHERE
C...OR IN FREE SPACE.
C

C

C
C...THE 4 INPUT/OUTPUT FILES PREFORM THE FOLLOWING FUNCTIONS:
C
C (1) DA2 CONTAINS INPUT PARAMETERS
C K,N,TAU,H,SIGM,FREQ,KSKIP,
C XM,KK,KL,AL,BET,ZO,ZOO,EMAX,EZ,ZMAX.
C (2) ELFL CONTAINS INFORMATION ABOUT THE HORIZONTAL
C ELECTRON DENSITY STRUCTURE.
C (3) RESULT CONTAINS THE SOLUTIONS TO THE PARABOLIC
C EQUATION AT EACH HEIGHT Z AND EACH X STEP.
C (4) PASS IS THE RENAMED FILE RESULT. PASS IS USED
C IF FURTHER COMPUTATIONS ARE TO BE DONE IN FREE
C SPACE BELOW THE BUBBLE.
C
********************************************************** k*********

C...THE 4 SUBROUTINES PREFORM THE FOLLOWING FUNCTIONS
C
C (1) UO SETS THE INTIAL VALUES ON THE WAVE AT Z=0.
C (2) FLUCT CALCULATES THE FLUCTUATING PART OF THE
C DIELECTRIC PERMITTIVITY AND CALCULATES THE F
C FUNCTION.
C (3) DCALC CALCULATES THE MhTRIX EQUATION D-A*U.
C (4) THOMAS SOLVES THE MATRIX EQUATION B*X=D USING
C GAUSSIAN ELIMINATION VIA THE THOMAS ALGORITHM.
C

*********** **** ******** ************ **** **** ** **** * **** **** ** * ***

C
C... THE INPUT PARAMETERS IN DA2 ARE:
C
C (1) K THE NUMBER OF STEPS IN THE X DIRECTION.
C (2) N THE NUMBER OF STEPS IN TFE Z DIRECTION.
C (3) H THE STEP SIZE IN THE X DIRECTION IN METERS.
C (4) TAU THE STEP SIZE IN THE Z DIRECTION IN
C METERS.
C (5) SIGM A FACTOR USED IN THE NUMERICAL PARABOLIC
C EQUATION SOLUTION. (SEE REPORT)
C (6) FREQ THE WAVE FREQUENCY IN MHZ.
C (7) KSKIP THE NUMBER OF STEPS IN THE Z DIRECTION



C RECORDED ON FILE PASS. IF KSKIP IS NOT EQUAL
C TO ZERO THEN PASS IS AUTOMATICALLY READ AND
C ELFL IS NOT READ.
C (8) ZM ON4LY EVERY ZM STEP IN THE Z DIRECTION IS
C RECORDED ON FILE RESULT.
C (9) KK ONLY EVERY KK STEP IN THE X DIRECTION IS
C RECORDED ON FILE RESULT.
C (10) KL THE NUMBER OF STEPS IN THE Z DIRECTION
C COMPUTED IN ALL PREVIOUS RUNS.
C (31) AL A FACTOR USED IN THE WEIGHTING FUNCTION.
C (12) BET A FACTOR USED IN THE WEIGHTING FUNCTION.
C (13) ZO A FACTOR USED IN THE WEIGHTING FUNCTION.
C (14) ZOO A FACTOR USED IN THE WEIGHTING FUNCTION.
C (15) EMAX A FACTOR USED TO COMPUTE THE PARABOLIC
C PROFILE. THE ELECTRON DENSITY IN
C ELECTRONS/CM**3 AT ZMAX.
C (16) EZ THE ELECTRON DENSITY IN ELECTRONS/CM**3
C AT Z-O.
C (17) ZMAX THE HEIGHT OF THE MAXIMUM ELECTRON
C DENSITY IN THE PARABOLIC PROFILE.
C

COMMOW/AAA/ELX (800)
COMMON/,BBB/FREQ,H,N,TAUPI,XKI
COMMON/CCC/AL,BET,EMAX,EZ,ZMAX,ZO,ZOO
COMPLEX AK(800),CK(80U),U(800),CCK(800),D(800)

+,X(800) ,AAK(800)
DIMENSION F(800) ,AMP(800) ,PH(800) ,TEMP(2,800)
INTEGER ZM

c
C...READ THE INPUT PARAMETER FROM FILE DA2.
C

READ(3,100) K,N,TAU,H,SIGM,FREQKSKIP
READ(3,125)ZM,KK,KL
READ(3,150)AL,BET,Z0, ZOO,EMAX,EZ,ZMAX

c
C...NORMALIZE THE STEP SIZE TO THE WAVE NUMBER AND SET THE
C...VALUE FOR PI. THIS IS EQUATION (35).
C

PI=.0*ATAN(l.)
XKI=300./(2*PT*FREQ)
TAU=TAU/XK I
H-H/XKI

C
C...IF KSKIP IS NOT EQUAL TO ZERO THEN THE COMPUTATIONS WILL
C...BE DONE OUTSIDE THE IRREQULAR MEDIUM. THE FILE ELFL
C...DOES NOT NEED TO BE READ AND THE INITIAL VALUES FOR
C...THE T' MATRIX ARE OBTAINED FROM THE PREVIOUS
C...COMPUTATIONS IN FILE PASS.
* C

IF (KSKIP. NE.0) GU TO i5

iF.



c
C...READ THE FILE ELFL WHICH CONTAINS THE ELECTRON DENSITY
C...INFORMATION OF FIGURE 2. THTS INFORMATION IS STOREDC... IN ELX.
C

READ(2,175) (ELX(I) ,I-, K)
C
C...IF FILE PASS HAL NO VALUES STORED IN IT, THE COMPUTATIONS
C...START AT Z=O AND THE PARAMETERS ARE OUTPUT TO
C...FILE RESULT.
C

KL-N
T-TAU*XXI
H1-H*XKI
WRITE(1,200) K,N,T,H1,SIGMFREQ,KLKSKIP
WRITE(1,225) KK,ZM

C
C•...THE U MATRIX IS THE COMPLEX AMPLITUDE OF THE WAVE.
C... SUBROUTINE UO IS CALLED TO SET THE INITIAL CONDITIONS
C...OF U.
C

CALL UO(UK)
GO TO 11

C
C...THIS IS THE BRANCH POINT IF KSKIP IS NOT EQUAL TO ZERO
C...ANr THE FILE PASS NEEDS TO BE READ. IN THIS CASE THE
C... INTIAL VALUES OF U ARE OBTAINED FROM PREVIOUS
C....COMPUTATIONS STORED IN FILE PASS.
C

15 READ(5,250) K,N,TAU,H,SIGMFREQKL,KSKIP
READ(5,275) KK,ZM

DO 16 L-1,KSKIP
READ(5,300)(TEMP(1,I),TEMP(2,I),AMP(I),PH(I),I-1,K)

i 6 CONTINUE
DO 17 I-lK
U(I)-CMPLX(TEMP(I,I),TEMP(2,I))

17 CONTINUE
S11 CONTINUE

c
C...THE NUMERICAL SOLUTION TO THE PARABOLIC EQUATION BEGINS.
C
C...THE TWO MATRICES OF EQUATION (43) A AND B ARE STORED IN
C...THREE ARRAYS EACH. FOR A, THE THREE ARRAYS ARE AK,CK,BK.
C ...AK AND BK STORE THE OFF DIAGONAL ELEMENTS OF A
C...AND CK STORES THE DIAGONAL ELEMENTS OF A. SIMILARILY,
C...AAK, BBK, CCK STORE THE ELEMENTS OF MATRIX B.
C...SINCE THIS PROBLEM HAS SPECIAL SYMMETRY AK=BK AND
C.. .AAK-BBK SO THESE ARRAYS ARE NOT STORED TWICE.

C...THE AK AND AAK MATRICES ARE SET UP ACCORDING TO EQUATIONS
C... (45-48).
C
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DO 1 I-1,K
R-0.0
AI-0.5/(H*H)
AK'I) -CMPLX (R,AI)
RmO.0
AIl (. 5/(H*H) )*TAU*SrGM
AAK (I) -CMPLX (R, AI)

1 CONTINUE
C
C...NOW THE MAIN LOOP BEGINS. FIRST THE DIAGONALS OF THE
C...A AND B MATRICES ARE SET UP. BY EQUATIONS (45-48)
C ... IT CAN BF SEEN THAT THESE VALUES DEPEND ON THE ELECTRON
C...DENSITY FLUCTUATIONS. IF THE COMPUTATIONS ARE TO BE
C... DONE IN FREE SPACE THERE ARE NO ELECTRON DENSITY
C ... FLUCTUATIONS SO THt F. FUNCTION IS SET TO ZERO.
C

DO 2 J-1,N
DO 3 Inl,K
F(I)-0.0

3 CONTINUE
IF(KSKIP.NE.0) GOTO 5
CALL FLUCT(F,J,K)

5 DO 6 I-l,K
R=0.0
AI--I.0/(H*H) ÷F(I)/2
CK (I) -CMPLX (R, AI)
Ru'. 0
AIm- (TAU*SIGM) / (H*H) +F (I) *SIGM*TAU/2
CCK (I) -CMPLX (R, AI)

6 CONTINUE
C
C...NEXT THE PRODUCT OF TWO MATRICES D-A*U IS CALCULATED INC ... • DCALC.
C

CALL DCALC(AK,AK,CKU,D,K)
C
C...NOW THE SYSTEM OF EQUATIONS IS SOLVED VIA THE THOMAS
C...ALGORITHM. X-(B INVERSE)*A*U. THIS IS EQUATION (51).
C

CALL THOMAS(AAK,AAK,CCK,X,D,K)
C
C...FINALLY THE EQUATION U(N+1)=U(N)-X*TAU IS CALCULATED.
C.. .EQUATION (49).
C

DO 4 I1-,K
R-REAL(U(I))-TAU*REAL(X(I))
AI-AIMAGt(U(I) )-TAU*AIMAG(X(I))
U (I) -CIPLX (R, AI)

4 CONTINUE
C
C...THE MAGNITUDE AND PHASE OF THE COMPLEX AMPLITUDE IS
C...CALCULATED.
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( DO 7 I-1,K
AMP(I) -SQRT(R.EAL(U('I) ) **2+AIyMAG(U(I) )**2)
PH(I)-ATAN2(AIMAG(UF(I) ) REAL(U(I)))
IF(PH(I) .LT.0.0) PH(I) -PH(I) +2*PI
PH(I)-PH(I) /PI

7 CONTINUTE
C
C ... WRITE THE REAL PART, THE IMAGINARY PART, THE AMPLITUDE
C ... AND THE PHASE TO FILE RESULT. ONLY EVERY ZM TH STEP
C...IN THE Z DIRECTION AND EVERY !(K TH STEP IN THE X
C...DIRJECTION IS OUTPUT,.
Cq ~Ii(J/ZM)*ZM

IF(I.NE.J) GOTO 2

+ ,PH (I) ,1-1, K, KK)
2 CONTINUE

ENDFILE 1
100 FOP.MAT(14,1X,I4,4(lXFl2.6),1X,I6)
125 FORMAT(I4,14,16)
150 FORMAT(7E10.2)
175 FORMAT(10F8.2)
200 FORMAT(2HK-,14,2X,2HN-, 15,2X,4HTAU-,Fl1.4,2X

*,2HH-,Fll.4,2X,5HSIG?4-,F6.4,2X,5HFREQ-,FS.2,2X
*, 3HKLm, I5,2X, 6HKSKIP-, I5)

225 FO1PMAT(3HKIKm,14,3HZM-,14)
250 FORMAT(2X, 14,4X, 15,6X,Fll.4,4X,?11.4,7X,F6.4, 7X,F8. 2,

+5X,I5,8X,15)
275 FORMAT(3X,14,3X,14)
300 FORMAT(2(2X,4E16.10))
400 FORMAT(1X,15)

S TOP
END

C

C
'I SUBROUTINE UO(U,L)

C
C...THIS SUBROUTINE SETS THE INITIAL VALUES TO THE MATRIX U

* C
COMPLEX U(L)
Dc' 1 1-n1,L
U (2" CMPLX (1. 0,0. 0)

1 CoNfi~UE
RETURN
END

C

C
SUBROUTINE FLUCT(F,J,tK)

C



C ... THIS SUBROUTINE CALCULATES THE FLUCTUATING PART OF THE
( C...DIELECTRIC PERMITTIVITY AND THE F FUNCTION FOR THE BUBBLE

C...MODEL. TH(E VERTICAL VARIATIONS ARE DETERMINED BY THE
C...PARABOLIC PROFILE MULTIPLIED BY THE WEIGHTING FUNCTION
C...G. THE HORIZONTAL VARIATIONS ARE DETERMINED BY THE FILE
C...ELFL (STORED IN ARRAY ELX).

COMMON/AAA/ELX (800)
COMMON/BBB/FREQ,HNTAU,PI,XKI
COMMON/CCC/AL,BET,EMAXEZ, ZMAX,ZO, ZOO
DIMENSION F(600) ,DZ(600) ,DPZ1(600)
Z=TAU*(J-2.) XKI
Z 2.-TAU *J *XK I

C
C C... CALCULATE THE WEIGHTING FUNCTION FOR Z AND Zi. (G AND Gi)
C

IF(Z.LZ.ZO) GOTO 1.
IF(Z.GT.ZOO) GOTO 2
Gal.0
GI-1.0
GO TO 3

1. ARG=((Z-ZO)/AL)**2
ARG1-((Zi-ZO) /AL) **2
IF(ARG.GT.200.0) GOTO 4
IF(ARG1.GT.200.O) GOTO 4
G=EXP (-ARG)
GloEXP(-ARG1)
GOTO 3

2 ARG ( (Z-ZOO) /BET) **2
ARG1-((Z1-ZOO) /BET) '*2
IF(ARG.GT.200.O) GOTO 4
IF(ARG2..GT.200.0) GOTO 4
G-EXP (-ARG)
G1I*EXP (-ARG I)
GOTO 3

4 Gn.0.
GI-.in.0

C
C ... THE SCALE HEIGHT HH IS CALCULATED.
C
3 HHi2.0.OE+03

C
C.-T'HE ELECTRON DENSITY AT THE EDGE OF THE BUBBLE IS
C ... CALCULATED' FOR HEIGHTS Z AND Z1.
C

EuEM4AX*(I.O-( (Z-ZMAX)/HH) **2) 'G
EI-EMAX*(2..0-((Zi-ZMAX)/HH)*"2) 'Gi
FACT-i .0

.F'(E.LE.O.0) FACT-O.0
TFCE1.LE.0.0) FACT2.-O.0

C... THE SQUARE OF THE PLASMA FREQUENCY AND THE FACTOR



C ... (WP/W)**2 ARE CALCULATED FOR THE BUBBLE EDGE AT
C... HEIGHTS Z AND Zi.
C

FPm8 . 6E-6 *E/ (FREQ**2)
FP1.80. 6E-6*El/(FREQ**2)

C
C ... THE FLUCTUATING PART OF THE DIELECTRIC ?ERMITTIVITY
C ... AND THE F FUNCTION IS CALCULATED FOR EACH X STEP AT
C ... HEIGHT Zi. EQUATION (32).
C

DO 6 I-1,K
DPZ (I) FACT*FP* (ELX(I) /ELX(K) -1.0)
DPZ1(I) mFACT1*FP1*(ELX(I)/ELX(K)-1.0)
F(I)in(DPZ(I)+DPZ1(I) )/2.0

6 CONTINUE
RETURN
END

C

SUBROUTINE DCALC(AK,BK,CK,U,D,K)
C
C.... THIS SUBROUTINE CALCULATES THE PRODUCT D-A*U. EQUATION
C...(54). NOTE THAT AK=BK IN THIS PROBLEM.
C

COMPLEX AK(K) ,BK(K) ,CK(K) ,U(K) ,D(K)
M-K-1
DO 1. 1-2,M

1 CONTINUE
D(1)-CK(1) *U(1)+BK(1) *U(2)
D (K) AK (K) *U(K-1) +CK (K) *U (K)
RETURN
END

C

SUBROUTINE THOM4AS(A,B,C,X,D,K)
COMPLEX A(600) ,B(600) ,C(600) ,X(600) ,D(600)

+,ALF(600) .BT(600)
* C

C ... THIS SUBROUTINE SOLVES THE M4ATRIX EQUATION BX=AU
C ... (WHICH IS THE SAME AS BX-D) FOR X.
C
C...CONSIDER THE SYSTEM:
C
C (1) A(I) *X(I..1) +C(I) *X(I) +B(I) *X(I+1) -D(I)
C (2) X(1)--B(1)/C(1) *X(2)4.D(1) /C(1)
C (3) X(K)in-A(K)/C(K)*X(K-1)+D(K)/C(K)

4 C
C ... BECAUSE X(O)0O AND X(K41-)=0
C



C...ASStJME THE SOLUTION:4C X(I)UALF(I)*X(1+1)+BT(r+1)
C
C.... WHERE:
C (4) ALF(2)--B(1)/C(1) SEE EQ. (2) ABOVE
C (5) BT (2) meD(1) /C (1) SEE EQ. (2) ABOVE
C (6) ALF(I+1)u-B(I)/(A(I)*ALF(I)+C(I))
C (7) BT(1i1) a(D(I) -Al) *87(I) )/(A(I) *ALF(I) +C(I))
C
C ... NOTE THAT ANB IN THIS PROBLEM BECAUSE OF SYMMETRY.

ALF (2) =-BC(1) /C (1)

DO1 Iw2,M

1 CCNTINUE
J-M*((K-AI+1())(()Ar()CXi
DO 2 1-1,M

X(J)oALF(J+1) *X(J+1)+BT(J+1'1
2 CONTINUE

RETURN
1* END



PROGRAM PULSE(INPUT,OUTPUT, ISPECT,TAPE20-ISPECT, IFREQ,
+TAPE30IFREQ)

C...THIS PROGRAM WILL CALCULATE AND PLOT THE FFT OF A PULSE
C...THE PARAMETERS OF THE PULSE THAT CAN BE
C ... CHOOSEN ARE:
C 1) FREQ, THE CAPRIER FREQUENCY IN GHZ.
C 2) TAU, THE PULSE DURATION IN NANOSEC.
C 3) A, THE AMPLITUDE OF THE PULSES IN

VOLTS.
C...THE PULSE TIME FUNCTION IS ALSO PLOTTED.
C...THE MAX FREQUENCY COMPONENT SHOULD BE LESS THAN 60 GHZ
C...TO AVOID ALIASING.
C

DIMENSION DATA(8200),XT(8200)
COMPLEX C(8200)
INTEGER PERIOD, TAU

C
C...SET UP THE PARAMETERS OF THE PULSE.
C

READ(30,125) FR'Q,tTAD
A-1.0

C
C...INITIALIZE TH!E ARRAYS, DATA (WHERE THE TIME FUNCTION AND
C...LATER THE FREQ SPECTRUM IS STORED). C THE COMPLEX REP.
C...OF DATA. AND, XT AN ARRAY USED TO PLOT AGAINST.
C

DO 1 1-1,8200
C(I) -CMPLX(0.00,0.00)
DATA(I) .0.0
XA-I
XT(I)a(XA/(FREQ*8.0)-4096.0/(FREQ*8.0))

1 CONTINUE
~C

C...NOW THE PULSE IS COMPUTED AND STORED IN DATA AND C.
C

TAU1-TAU* (8*FREQ)
Jn(4096-TAUI/2)
L- (4096+TAU1/2)

DO 3 J1uJ,L
X-(J1-J) *(3.14)/4.0
DATA(Jl) A*COS (X)

3 CONTINUE
C
C...THE PULSE IS MULTIPLIED BY A GAUSSIAN FUNCTION SO THAT IT
C...DOESN'T BEGIN AND ENO ABRUPTLY.
C

IM-0
V-SQRT(%'(TAU/2)**2)/(2*4,61))

DO 8 IJ,L
X-((XT(I)-IM)**2)/(2*(v**2))
DATA(I) -DATA(I) *EXP(-X)

8 CONTINUE
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D~O 10 1-1,8192
Yl1DATA(I)
Y2-0.0
C (I) mCMPLX (Y , Y2)

10 CONTINUE
C
C...FIND '"H$E POWER IN THE TIM!E DOMAIN EXPRESSION OF THE
C.. .PULSE.
C

PT-0.0
DO 15 I-JIL
PT-DATA(I) **24.PT

15 CONTINUE
C
C... ?LOT THE TIME FUNCTION.
C

Xl-TAU/2+30
CALL USTART
CALL U2ERASE
CALL URESET
CALL t7DAREA(0.00 ,7.49,O.O0,5.71)
CALL USET("XBO'rH*
CALL USET ("YBOTH*)
CALL UPSET("XLABELW,"TIME IN NANOSEC.;')
CALL UPSET( "YLABEL*, "AMPLITUDE; U)

CALL USET ("OWNSCALEM)
CALL UWINDO(-Xl,Xl,-1.O,1.O)

CALL UPLOT1(XTDATA,8l92.0)
CALL UPAUSE

9 NN-13

CALL FFT"(C,NN,.TRUE.)

C...NETUTE FREQUENCY SPECTRUM IS PLOTTED.

Xl-FREQ/1024
4 DO 4 Iul,4097

DATA(I) aSORT( (REAL(C(I) )**2) +(AIMAG(C(I) )**2))

4 CONTINUE

C...FIND THE POWER IN THE FREQUENCY DOMAIN EXPRESSION OF THE
C...PULSE AND ADJUST THE FREQUENCY SPECTRUM SO THAT
C ... PARSEVAL'S THEOREM HOLDS.
C

P0.0
DO 14 Iul,4096
DATACI)=DATA(I) /1500.0
PF-DATA(I) **2+PF

L 4



DO 10 I-,8192
YI-DATA(I)
Y2-0.0
C (I) -CMPLX(Y1,Y2)

10 CONTINUE
C
C...FIND THE POWER IN THE TIME DOMAIN EXPRESSION OF THE
C ... PULSE.
C

PT-0 .0
DO 15 I-J,L
PT-DATA(I) **2+PT

15 CONTINUE
C
C...PLOT THE TIME FUNCTION.
C

XI-TAU/2+30
CALL USTART
CALL UERASE
CALL URESET
CALL UDAREA(0.00,7.49,0.00,5. 7 1)
CALL USET("XBOTH")
CALL USET("YBOTH")
CALL UPSET("XLABEL", "TIME IN NANOSEC. ;")
CALL UPSET( "YLABEL", "AMPLITUDEi ")
CALL USET ("OWNSCALE")
CALL UWINDO(-X1,XI,-.O,1.0)
CALL UPLOT1(XT,DATA,8192.0)
CALL UPAUSE

C
C...NOW THE FFT SUBROUTINE IS CALLED, THE FREQ SPECTRUM WILL
C...BE RETURNED IN ARRAY C.
C

9 NN-13
CALL FFT(C,NN,.TRUE.)

C
C...NEXT THE FREQUENCY SPECTRUM IS PLOTTED.
C

X1-FREQ/1024
DO 4 1-1,4097
DATA(I)-SQRT((REAL(C(!))**2)+(AIMAG(C(I))**

2 ))
XT(I) -(I-1) *X1

4 CONTINUE
C
C...FIND THE POWER IN THE FREQUENCY DOMAIN EXPRESSION OF THE
C...PULSE AND ADJUST THE FREQUENCY SPECTRUM SO THAT
C...PARSEVAL'S THEOREM HOLDS.

PF-0.0
DO 14 1-1,4096
DATA(I) -DATA(I)/1500.0
PF=DATA(I) **2+PF

L 
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F14 CON"'UNUE
-~XF-SQRT(PT/PF)

XF=XF/2 .5066
DO 13 1-1,4096
DATA (I) wDATA (1) *Xcq

13 CONT1INUE
X1-FREQ-. 5
X2*?R.EQ+. 5
CALL LYSTART
CALL tIERASE
CALL URESET
CALL tIDAREA(0.00t7.49,0 .00,5.73.)
CALL USET("XBOTH")
CALL UPSET ("XLAflEL"#*FREQUENCY IN GRZ,-')
CALL US ET ( YBOT8 1)
CALL UPSET("YIABEYb, "AMPLITUDE7")
CALL USET ("OWNSCALE")
CALL UWINDO(X1,X2p0.0,2.0)
CALL UPLOTl(XT,DATAt4096.0)
CALL UPAUSE

Ct C... PLOT THE PHASE SPECTRUM.
C

DO 6 1*114096
DATA(I) .0.0
Y1*AIMAG(C (1')6
Y2 -REAL (C (I))

IF(Y.EQ.O) GT
DATA(I) uATAH2Z(Y1,Y2)

6 CONTINUE
CALL tIERASE
CALL tJDAREA(0.00,7.49,0.00o5.71)
CALL UPSET("YhABEL","PHASS IN RADS:")
CALL UWINDO(Xl,X2,-4 .0,4.0)
CALL UPLOT1(XT,LDATA,4096.0)
CALL UPAUSE

C ... PRINT REAL AND IMAGTNARY PARTS OF THE V'REQUENCY
CII..SPECTRUM IN FILE ISPECT.

PRINT(20,100) (XT(I),REAL(C(I)),AIM4AQ(C(I)),1-1,4097)
4 100 FORMAT(1X,2(F7.4,lXFI.4.7,1X,F14.7,3X))

125 FORMAT(lX,FS.4,1.X,14)
END
SUBROUTINE FFT(X,M, FORWAR)

C FAST FOURIER TRANSFORM VERSION 0.3. 30 JULY 1980

C ... STANDARD FAST FOtYAI'-R TRANSFORM. X IS BOTH THE INPUT
C ... AND THE OUTPUT ARRAY CONTAINING 2**M1 COMPLEX DATA POINTS.

160



C...FORWAR=.TRUE. DOES FORWARD TRANSFORM, FORWAR-.FALSE.
C...DOES INVERSE TRANSFORM.
C

LOGICAL FORWAR
COMPLEX X,tl,W,T
DIMENSION X(8200)
N-2**M

C
C...BIT REVERSAL SECTION
C

NV2 uN/2
NM1 -N-i

~~DO 40 Iwl,NMl
IF (I.GF.J) GO TO 10
T-X(J)
X(J)uX(I)
X(I) -T

10 K-NV2
20 IF (K.GE.J) GO TO 30

J-J-K

GO TO 20

C30 JK
C. COMUTNLIATONU SCTO

C

PIEs-3 .141592653589
IF (.NOT. FORWAR) PIE--PIE

DO 70 L-1,M
LE-2**L
LEluLE/2
ANGLE=PIE/FLOAT (LEl)
tU-(1.010.0)
W-CMPLX (COS (ANGLE) ,SIN(At4GLE))

DO 60 J-1,LE1
DO 50 I-J,N,LE
IP-I+LE1
T-X(IP) *U
X(IP) -X(I) -T
XCI) -XCI) +T

50 CONTINUE
u=U*w

60 CONTINUE
71 CONTINUE

C
C... SCALING SECTION - INVERSE TRANSFORM ONLY

IF (FORWAR) RETURN
SCALE-. 0/FLOAT(N)



DO 80 IJ-1,N
X (IJ) wX (IJ) *SCALE

80 CONTINUE
RETURN
END

PROGRAM INTER( INPUT, OUTPUT,U9,UFREQ,TAPE!0-U9,
+TAPE20UFREQ, IFREQ,TAPE30UIFREQ)

C
C...THIS PROGRAM INTERPOLATES BETWEEN THE NINE FREQUENCIES
C...THAT ARE THE OUTPUTS OF SHEET1.
C

DIMENSION TA(4097) ,A(9) ,P(9) ,TP(4097) ,XT(4097)
READ(30,200) FREQ

C
C...THE ARRAY WHICH WILL STORE THE INTERPOLATED FREQUENCY
C...OUTPUT IS INTTIALIZED TO ZERO SO THAT ALL OF THE
C...FREQUENCIES OUTSIDE OF THE PULSE BANDWIDTH WILL BE ZERO.
C DO 1 1-1,4097

TA(I) -0.0
TP(I) -0.0XT(I) -(FREd/1024.0) *(I-l)

1 CONTINUE
C
C...READ THE INPUT DATA FROM FILE U9.
C

DO 2 1-1,9
READ(10,100) A(I) ,P(I)

2 CONTINUE
TA(753) wA(1)
TA(821) ,A(2)
TA(889) A(3)
TA(957) uA(4)
TA(1025) -A(5)
TA(1093) "A(6)
TA(1161) "A(7)
TA(1229) =A(8)
TA(1297) =A(9)
TP(753)=P(1)
TP(821)=P(2)
TP(889)-P(3)
TP(957) =P(4)
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TP ( 10 2 5) -P ( 5)
TP (10 93)-P (6)
TP ( 116 1) -P (7)
TP (1229) -P (8)
TP(1297) uP(9)

C
C ... THE LINEAR INTERPOLATION BEGINS.

Jul-Il
TA(I)*( (TA(I2)-TA(I1) )/(I2-11)) *J+TA(I1)

IF(I.EQ.12) 11-11+68
F3 CONTINUE

CC.. * WRITE THE INTERPOLATED SHEET1 OUTPUT TO FILE UFREQ.

PRINT(20,125) (XT(I) ,TA(I) ,TP(I) ,Im1,4097)
100 FORMAT(lX,FJ.2.8,3XF12.8)

15FORMAT(1X,2(F7.4,1X,F14.7tX,F14r.7,3X))
200 FORMAT(lXIF8.4)

125P

END

PROGRAM MULT( INPUTOUTPUTUFREQ, ISPECT,OZ%"TMUL, IFREQ,
i-TAPE1O-UFREQ,TAPE2O-ISPECT, TAPE3O-OUTMUL, TAPE4O-IFREQ)

C
C... THIS PROGRAM TAKES THE PULSE FREQUENCY SPECTRUM FROM
C... PROGRAM PULSE AND THE INTERPOLATED FREQUENCY OUTPUT FROM
C ... PROGRAM INTER AND MULTIPLIES THEM TOGETHER TO PRODUCE
C ... THE OUTPUT PULSE FREQUENCY SPECTRUM.
C

DIMENSION UA(4097) ,UP(4097) ,FR(4097) ,FI(4097) ,XT(4097)
C
C ... READ THE INPUT DATA FROM FILES ISPECT AND UFREQ.
C

READ(20,1.25) (XT(I),FR(I),FI(I),I-l,4097)
READ(40,150) FREQ,TAU

C
* ~C...CHANGE THE MAGNITUDE AND PHASE PAkRTS OF THE IN4TERPOLATED

C...SPECTRUM INTO REAL AND IMAGINARY PARTS.

DO 5 Ial,4097
IF(UP(I).GE.2.0) UP(I)-UP(I)-2.O



IF (UP (I).GE.2.O0) UP (I) -UP (1)-2. 0
IF(tJP(I).GE.2.C1) UP(I)=UP(I)-2.0

5 CONTINUE
PI=3 .141592654

DO 1 1-1,4097
tTP(I) UP(I) *PI
A-UA(I)
BmUP(I/
CALL PR(A,B,XY)
UA(I)=X
UP(I) mY

1 CONTINUE
C
C... NOW THE TWO FREQUENCY SPECTRUMS ARE MULTIPL~IED TOGETHER.
C

Do 2 I=1,4097

Y-(tJP(I) *FR(I)) +(UA(I) *FI(I) )
FR(I) -X

2 ~FI(I) mY
2 CONTINUE

C
C... PLOT THE OUTPUT PULIE FREQUENCY SPECTRUM.
C

Do 4 1-1,4097

Ft ~UA(I) =SQRT(FR(I) **2+FT(I) **2) *.009
4 CONTINUE

lXi -. 5
X~ rREQ4-. 5

CALL URESET
CALL UERASE
CALL UDAREA(0.00,7. 49,0.00, 5.71)
CALL USET("XBOTH)
CALL USET("Yl3OTH"%)

K CALJL UPSET("XLABEL","FR9QUENCY IN GHZ;")
Ir ~ CALL UPSET ("YLBL, "AMPLýTUDE;")

CALL USET ( OWNSCALE")
CALL UWINDO(xJ.,x2,0.0,2.0)
CALL UPLOT1(XT,UA,4097.0)
CALL UPAUSE

C
C... .THE OUTPUT PULSE FREQUENCY SPECTRUM IS 01Y fPUT TO FILE
C... .OUTMUL.

PRINT(30,100) (XT(I),FR(I),FI(I),I=l,4097)
100 FORMAT(1X,3(F7.4,1X,FIO.3,1X,F9.3,3X))
125 FORMAT(1X,2(F7.4,lX,F14.7,1X,F14.7,3X))
150 FORMAT(1I8.,X,4

STOP I84l,4

r- END



C

C

SUBROUTINE PR(A,P,XI')
C
C...THIS SUBROUTINE CONVERTS ýOMPLEX NUMBERS IN THE POLAR
C...REPRESENTATION TO THE RECTANGULAR REPRESENTATION.
C

PI-3.141592654
Y--ABS(PI/2.0-P)
IF(YI.LT..001) GOTO 1
Y2-ABS(3.0*PI/2.0-P)
IF(Y2.LT..001) GOTO 2
TP-TAN (P)
Xw((A**2)/(l+TP**2)) **.5
YX*TP
IF(P.GT.PI/I.O.AND.P.LT.3.0*PI/2.0) GOTO 4
GOTO 3

1 X"0.0
Y-A
GOTO 3

2 X"0.0
Y--A
GOTO 3

4 X--X
Y--Y

3 RETURN
END

PROGRAM IFFT ( INPUT,OUTPUT, OUTMUL, OUTTIM, .APE10-OUTMUL,
+TAPE20wOUTTIM, IFREQ,TAPE30-IFREQ)

C
C...THIS IROGRAM TAKES THE OUTPUT FREQUENCY SPECTRUM AND
C...PRODUCES THE TIME DOMAIN PULSE VIA THE INVERSE FFT.
C

INTEGER TAU
DIMENSION FR(8200) ,FI(8200)
COMPLEX C(8200)

CC. .. READ THE INPUT DATA FROM FILE OUTMUL.

READ(10,100) (XT,FR(I),FI(I),Iw1,4097)
READ(30,150) FREQ,TAU

C

C
C...THE FREQUENCY SPECTRUM IS PERIODIC WITH A PERIOD OF 2 PI.
C...THE REAL PART OF THE SPECTRUM IS A EVEN FUNCTION, SO THE
C... MIRROR IMAGE IS CREATED FOR [PI,2PI]. THE IMAGINARY PART
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C...OF THE SPECTRUM IS AN ODD FUNCTION, SO THE NEGATIVE
( C... MIRROR IMAGE IS CREATED FOR [PI,2P1].

DO 2 1-1,4095
FR(4097+I) .FR(4097-I)
FI(4097+I) --FI(4097-I)

2 CONTINUE
DO 3 1-1,8192
C (1) CMPLX (FR (I) IFI (I))

3 CONTINUE
C
C.. .CALL THE INVERSE FF..' TO GET THE OUTPUT PULSE IN
C...THE TIME DOMAIN.

q .NN'13

CALL FFT(C,NN, .FALSE.)
C
C...PLOT THE TIME FUNCTION
C

DO 4 1-1,8192
FR (1) =REAL (C (1)
FI(I)=(I/(FREQ*8.0)-4097/(FREQ*8.0))

4 CONTINUE
Y-0.0

DO 5 1-1,8192
IF(FR(I) .GT.Y) Y*FR(I)

5 CONTINUE
IF(Y.LE.1.0) GOTO 9

DO 6 1-1,8192
FR(I) -FR(I)/Y

6 CONTINUE
9 CONTINUE

DO 15 1-1,4096
TEMP-FR( I)
FR(I) aFR(8193-I)
FR(8193-I) -TEMP

15 CONTINUE
X1-TAU/2+30
CALL PLOTS(0.,0.,99)
'CA LL USTART
CALL UERASE
CALL UDAREA(O. 00, 7.49,0.00, 5.71)
CALL USET( "XBOTH")
CALL USET( "YBOTH")
CALL !JPSET("XLABEL","TIME IN NANOSEC;-)
CALL UJPSET("YLABEL", "AMPLITUDE;")
CALL USET( 'OWNSCALE")
CALL TjWILNDO(--X1,Xl,-1.0,1.0)
CALL UPLOT1(FI,FR,8192.0)
CALL UPAT'SE
CALL PLOT(0.,O.,999)

988 CONTINUE



C
C ... OUTPUT THE TIME FUNCTION TO FILE OUTTIM.

PRINT(20,125) (FI(I),FR(I),I-i,8192)
-00 FORMAT(IX,3(F7.4,lX,F10.3,IX,F9.3,3X))
125 FORMAT(lX,4(F8.1,2X,F7.4,4X))
150 FORMAT(IX,F8.4,1X,14)

STOP
END
SUBROUTINE FFT (X,M, FORWAR)

C FAST FOURIER TRANSFORM VERSION 0.1 30 JULY 1980

C
C...STANDARD FAST FOURIER TRANSFORM. X IS BOTH THE INPUT
C...AND THE OUTPUT ARRAY CONTAINING 2**M COMPLEX t5ATA POINTS.
C... FORWAR-.TRUE. DOES FORWARD TRANSFORM, FORWAR-.FALSE. DOES
C... INVERSE TRANSFORM.
C

LOGICAL FORWAR
COMPLEX X,U,W,T
DIMENSION X(8200)
N-2**M

C
C...BIT REVERSAL SECTION
C NV2-N/2

NM1,N-1
J-1

DO 40 I-1,NM1
IF (I.GE.J) GO TO 10
T"X(J)
X(J)-X(I)
X(I)-T

10 K"NV2
20 IF (K.GE.J) GO TO 30

J-J-K
K"K/2
GO TO 20

30 J"J÷T
40 CONT-LNUE

C

C...MULTIPLICATION SECTION
C

PIE--3.141592653589
IF (.NOT. FORWAR) PIE--PIE

DO 70 L-1,M
LE"2**L
LE1=LE/2
ANGLE=PIE/FLOAT ( LEl)
U. (1. 0,0. 0)
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W-CMPLX(COS(ANGLE) ,SIN(ANGLE))
DO 60 J-I,LEI

DO 50 I-J,N,LE
IP,.I+LE1
T-X(IP) *U
X(IP) X(I) -T
X(I)-X(I) +T

50 CONTINUE
UrU*W

60 CONTINUE
70 CONTINUE

C...SCALING SECTION - INVERSE TRANSFORM ONLY
C

IF (FORWAR) RETURN
SCALE-1. 0/FLOAT(N)

DO 80 IJml,N
X(IJ) -X(IJ) *SCALE

s 0 CONTINUE
RETURN
END

PROGRAM ENVEL ( INPUT,OUTPUT,OUTTIM,OUTEN,TAPE10-OUTTIM,
÷TAPE20-OUTENOUTM,TAPE3OOUTM, IFREQ,TAPE40-IFREQ)

C
C...THIS PROGRAM FINDS THE ENVELOPE OF A PULSE STORED IN FILE
C...OUTTIM. ALSO THE IST,2ND AND 3RD MOMENTS ARE CALCULATED
C...AS WELL AS THE MEAN SQUARE PULSE WIDTH.
C

INTEGER TAU
DIMENSION TO(8192),EN(501),X(501)
READ(40,250) FREQ,TAU
READ(40,350) CORR

C
C...READ THE INPUT DATA FROM FILE OUTTIM.
C

READ(10,100) (Y,TO(I),I-1,8192)
13-500
X3-I3
i1=4089

DO 6 1=4093,4101
IF(TO(I) .GT.TO(Il)) 11-1

6 CONTINUE
JnII- (13*4)
LnIl+ (13*4)
X2"4097-Ii

C
C...COMPUTE THE PULSE ENVELOPE.
C
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DO 3 1-1, 13
C EN (1) -0.0

K-1
DO 1 I-J,L,8
X(JC)i( (I-1)-(X3/2)-(X2/8.0) )/FREQ
X (K)-X (K) -CORR
EN(M)- (TO (1) * *2) ~.5

1 CONTINUE
WRITE(30,325) I1,3,X(251)

C
C ... PLOT THE PULSE ENVELOPE.

X10TAU/2+30
CALL PLOTS(0.,0.,99)
CALL USTART
CALL UERASE
CALL UDAREA(0.00,7.49, 0.00,5.71)

*CALL USET(WXBOTH")
CALL USET("YEOTH")
CALL UPSET("XLABEL","TIME IN NANOSEC;")
CALL UPSET ("YLABEL", "AMPLITUDE:")
CALL USET( "OWNSCAILE*)
CALL UWINDO(-X1,Xl,0.0,1.0)
CALL UPLOT1(X,EN,X3)
CALL UPAUSE
CALL PLOT(0.,0.,999)

C . .CALCULAT'E THE FIRST FOUR MOMENTS.
C

A-0.0
B=0.0
CM0.0
D-0.0

* Do 2 1-1,13
Au(EN(I) **2)+A
B - (EN (1) **2) *X (I) +B
C -(EN(I M*2) (X (1) *2)4+C
Da(EN (1) *2) *(X(I M 3) +D

2 CONTINUE
TM1 -B/A
T.M2-iC/A

4 TMO-A
TM3-D/A
RMSP=TM2- (TM1**2)
SK-TM3-(3*TM2*TMI)+(2*(TM1**3))
SK-O.0

DO 5 I=1,13
SK-(EN(I) **2) *((K (I) -TM1) **3) +5K

5 CONTINUE
SK-SK/( (RMSP**.5) **3)



SK=S K/A

c OTIrTWI' 'rnP -'fMPOPAL MOMENTS AND THE MEAN SQUARE PULSE
C...WLL)TH TO FILE OUTM.
C

WRITE(30,275) FREQ,TAU
WRITE(30,125) 'IMO
WRITE(30,150) TM1
WRITE(30,175) 'rM2
WRITE(30,200) RMSP
WRITE(30,225) TM3
WRITE(30,300) SK

C
q C...OUTPUT THE PULSE ENVELOPE TO FILE OUTEN.

C
WRITE(20,100) (X (I) ,EN (1) , Il,13)

100 FORMAT(1X,4(FS.1,2X,F7.4,4X))
125 FORMAT(1x,FlO.4,11H 0TH MOMENT)
150 FORMAT(lX,Fl0.4,11H 1ST MOMENT)
175 FORMAT(lX,rlO.4,11H 2ND MOMENT)
200 FORMAT(lX,FIO.4,21a MEAN SQ. PULSE WIDTH)
225 FORMAT(1X,P'15.4,11H 3RD MOMENT)
250 FORMAT(1X,F'8.4,lX,14)
275 FORMAT(1XF8.4,4H GHZ,3X,14,SH NANOSEC)
300 FORM.AT(1X,F10.4,9H SKi.MNESS)
325 FORMAT(1X,3H***,3X, 17,3X,19,3X.F8.2)
350 FORMAT(1X,F8.4)

STOP
END



Appendix B

The input parameters for the bubble model are stored in two

files.

I. File ELFL

This file contains the N(z,x)/N 0 (z) information of Figure 2.

The N(z,x)/N 0 (z) ratio remains constant for a given x over the entire

range of z. However, N0 (z) changes according to Equation (30).

II. File DA2

This file stores 17 input parameters. The input parameters are:

1. K-576, the number of staps in the x direction.

2. N-620, the number of steps in the z direction.

3. H-42.3729, the step size in meters in the x direction.

4. TAU=500, the step size in meters in the z direction.

5. SIGM-.5, a factor used in the parabolic equation solution.

6. FREQ-2500, 800, 500, the u.ve frequency in MHz.

7. KSKIP-0, the number of steps in the z direction recorded on file

PASS. If KSKIP-O then PASS is not read.

8. ZM-620, only every ZM steps in the z direction is stored on file

RESULT.

9. KK-l, only every KK steps in the x direction is recorded on file

RESULT.

10. KL-O, the number of steps in the z direction recorded in previous

runs.

11. AL-1000, a factor used in the weighting function.

12. BET-20CO, a factor used in the weighting function.

13. ZO-IO5.OE+03, a factor used in the weighting function.
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14. ZOO-195.0E+03, a factor used in the weighting function.

15. EMAX-2.5E+05, the electron density in electrons/cm3 at ZMAX.

This parameter is named N. in Equation (30).

3
16. EZ, not used, the electron density in electrons/cm at z-O.

17. ZMAX-150.OE+03, the height in meters of the maximum in the

vertical electron density profile. This parameter is named

ZM in Equation (30).

HO, the scale height, is equal to 110 km in Program SHEET 1.

The output of SHEET I is stored in file RESULT.

1"72
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Systematic Refraction Caussoi by Equatorial Plasma
Bubblets obsserved in Microwave Scintillationns
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lUniversitv of Illinois
Urbasna.Champaign, Illinois 61801
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A' -rct. Equatorial ionospheric ocintillation data at 15415
M hz 'band, and 3945 5 Mhz 'C-bendl showing time shift of
up to oino econd between similar faders of the two signal% Are
proesenttd Simple modarl computations show thst systematic re-
francte viTects due to eqluatorial plAsma bubhles in the paflic.
ulair propagation geometry may explain the observed data.
Implications. on equstonal ionosphernc irregularities and acin.
tillatiiin theory Aire discussed.

lot roduction

Electron density Irregularities It, the nighttime equatorial
iiuoi.4phire are re-sponslble for causing icintlllatlons 'if trans.
iinusphertciillv propaglated radio waves with frequencies ais

V ~high is the Glis range. The onset of scintillation has been shown
to correspond to the passage of large, depletions in ionization
ilensitv through the propagation path Yeh et al , 1979; Boau et

A.198'01 The depletions have been named plasma bubbles
Mcc' lure at al . 19791 And are also associated with the plume
Wit'ic tUrej qeen by radar backscauter that extend vertically

se0veral hundred ktiliimeters to the topside oif the F layer 'Woodr-

man andl Lallos, 197,6'1 and the oiccurrence of "range spread r'
ininnugrams 'ibtAined in lthe equatorial region 'Aarons. 19112,
'rhe 'cintillationa produced by the irregularities assuicsatedc

with 'he Viasma bubble, ire often qv'ite seven, producing -atu-
rated fluituationA at VHF and poekltiiopeak fluctuatione oif tip
to 27db a; 1541 5 MIW L-bandiandd#dbat .194553 MHz 'Chbandi
it the dsta analyzed for this report.

lIn this. paper we report onet aspect iif the equatorial OH:
scintidaition phenomincisn that has not been reported previously
,ctintillation data sobsrved simultaneously at L'busid and C.

hbind have been liiuod to exhibit time displacements% of up to
= ins second betweern similar faides l'revioua workers have ob-
.ervtl 4imilar time ihifla in multifrequsncv obsarvatiiins 'if

rid", sutar scititillatimon it VHF' frequencies it low i'levstiiin
.. lusWilil And Roberts. 19.55' And the %cintillution of

pulsatrs ciuseit by the tenuous onterstelliir tilasme Itackott
mdLingt. 197. 1' Shishov *971 introduced a model if the

nt'~irmedium tiaviiig twot scales 'if inhormogeneities.
'ma!, ranidoim cintill.itiin pr-iducint irregularItIeS iiid largeo.

mo'n'r. :,'fmin"051 nlii h ciutte 'min refractuion. to rsplinii t1e
iabserveA quenec drift if ioterstellmr scintillAtion leatiurf-s
("'Ic urd ilce 'i4901 ,,h-rrvi-d the time shift iii widebor" 'bier.

vtons 4i the '(iiasair W271 hriiiign the sin krtfplaueirv planso
Their int-i-prewatimin .that ih ¶ili.pis'rsi,, -it' 'he wrintfi itin

listtern s~ aus.d by i ttricti iin ri iti I r'im ,h.i ip .,raiii icisi

in the iint.rpt ini'iairv 'jett ron ilrnstat lii boith is'i "ilheintn

time shift In this r-tnvir %a hall attimpt' .spl i" ''ur ''useor.
vati'jns loitig .iniil~ir 011ik with oir .Iisi t'tm rcain if It lit-
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The -lu., wi-re CuI!VCtcd latte IJanuary and early February,
ii9-1 it .sion~iun l1l.,nd 17 917 S. 14 4r'W. WS5 dipi which is
Iuci.-iil ntits the -Aouthern creist or the APPleOnA anocrly in F.
ri-chin mmeIt.iion S , gnalif from NMARISAi 115'W) were recekived
,)ii 134i ri Nla-.-bandi grid 39455 MIH& C-hendi The %scollika
wasvit-wed it so elevation -it 81* and azimuth of 35C. so the
jnir.p~igitin tiath was almost straight overhead and the p-imps-
,ation vector we* within .ita do ceaves of the itiagiotiv meridian
liitiie rhe rs-cooivng intivnnaA for both L and C-hand wars to-
;swatod pnrna lowsu fofsda illuminating a sinigle 3 meter didmeter

pairutuilic dish rho iignal to noise ratio As determined froim strip
cha~t% tecsjriing~iii .1 Id b at 1.-bandt and -'5 db at C-band,
howe-vet-, the 1. li,,nd Aljt-hl is also "cotiami~i&ed with un-
pttlietulile level i-liingto which tire due to changiting tr&Mc loads
,n the 1 to 1--Iminsi trimqunslsolr A typical signal level j)ump- is

-lb rhe .sniilol %(ijC signal wae recorded on Uape and later
-11g.tisas- i hug 112 hits it i rate of 34.5 Hs -1029 seconda per
,an~plinic pwrimdr and .Lored on mnagnetic tape 'rhe receiving And
oer,, .',&vlor'n %%i ttin was carefully chocked totisflacieortain that
ýhs uLiilhvc~ei hetween the scinitillation patterne s indeedd

Juto irregulir m.ructure in the ionosphere
The time 11%plasctimont betwevin the dift~aoctin patterns at the

two1 lrequvitiobc v~it Tessurvd, by computing the delay time
t 41 he ponss it the irom-e correlation between the fluictutiosiun of
-h.ý two 4imoaN rho AccuracY of iho croisi-cors-elation estimatet

-14ý.ndvnt .ii the -iienal to noite ratio on both channels. ina
,), ill -stent to which 'he tisuie is correlated between the two
chinnelo. In Additiotn. !ho unpredi~tabl.f sigrnal levelI jumps in
:h.- 1. hand diatai Aft ~aci incorrect results when the peak to
pe~ts I hitid jciniillitiiin i-vet is itw 1, 21 dh peas to ps-aki on
ins-ei. -Wi o'pirijit itudivo we have bet a thre.4hold scmintll

t iiideass-tr 1i5 at L-hand, iNsve which thoofitict~ul nimgetand
.igr. if ea~el ump% :ire tiot tigtififcint A further constraint was

.odto riiuirt that the me~asured time shifts correspund to
-i:nii.r itructurv ,. tlir two 4igl145s. o)nly shifts which curie-
N-nd '1 j i orrinu,s-d rnoio-corrtlotion of g~router thtan 5 have

............ n miJs- vdt
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Reut On iscusaioan

We have studied (ourt scintillation events which occurred in
the time period between 2100 Lind 2400 IYFC on January 27 and
30. 1981 -Ascension Island lncal time and UTC are the saens I
The time diaplacement betwoen similar Cades at L-band and C-
h nd as present to varying degrees in all of the data where a sig.
nilricant, crosecorrelation (> 5) as present. In Figur I we pre.
sent examples of data which show the tine shift along with the
corresponding cross-correlation functions, The C-band signal as
on top in both canse. A positive shift of the croeewtsrre lotion
peak measa that the C-lsand signsal is leading the L-band signal.

The temporal variation of the time displacement is shown in
Figure 2 for a 34 minnute segment of data, where each point rep.
resents. 30 seconda of icintillation. This data actually represents
two patches of scintillation activity; a brief initial patch of
intense scintillation which lasated fur approximately six minutes
followed approximately 2 minutes later by another patch which
lasted for over 90 minutes. The siection of data from 2227.2229
UTC which has been omitted corresponds to the lull in scintilla.
tion activity The mean scintillation index for the entire seig.
mriet shown in Figure 2 is approximately. . for C-band and 5 for
L-band. althojugh the C-band index went so high as 18 and
L-band ass high as .85. The average peaki cross-correlation as .3
and the average shift ai 11 isecinda with tan irme shift of .35
seconds. There appears to be no obviousc orrelation between the
ib-wrvvd thillai and the level of scintillation activity.

One of the interesitng characteristics of the data became
evident when we ex~amined the time shift obsberved At the "edalce'
of the patches of scintillation; where we use 'edge' to describe
the Aiatt said last few minutes of*a patch of scintillation. All four
of the patches we studied had a well defined onset and decay of
-activity which is charaictrizead by a sharp rise or fail of scintilla.
tion index except for the second patch ahown in Figure 2 which
decreased grnu' 'iAllv The time shift observed at all four of the
onseiats iosu pia e'('.hand leads L-bandi. while the shift observed
in the last minutes af .activity of the three eventa which %:eased
abruptly it negative This data is summarised in Table 1 where
the time or onset and decay is presented along with the approsi-
inate numbter of minutes that the timet shift was poeitive 'nuvga.
five, at the beginning 'endi of~an event.

Table I

Tine of o fminut~e~ifor Time of 0 of minut-.., for
Date Onset pxuisatav. shift flecay_ neigaiitve shift

1 27 MI 212 7 :10 .3. 2249-30 2
1 2781 2221.30 2.5 222700X 3 " i.-
1,2781 22310.00 61.5 gradual se ig

:.I ~l2 22N?43

Thi4 feature cian be' ,eien in Figure 2 whepre the beginning of
the plot sh~owi4 a poiti.av, 4hift which lasts for -2.5 minute- and
lhtn goes negative corresponding to thet unset and dcayv if the

f1irst p~atch -if icaratillaitiin The shilt as again positive when the
icintallaition resumes ugain it -2229

Sinmc the dirift if the ni.ghttitne plaxma is from west to east.
pri-tiamabiv. the 'niiist .and iriaay ir .i scintillatioan patch riirre

podto the iiasit jn wi-l odieiig. r..spviictiveiv. 'if the scintitllauIioi
Prodiucing ,tructiuriv in hio wniiphere In ,irder to i'spliin oiir

i)hte rv ition', -ofitm uie hilt it, .t rm4 tit w hii to knowiaun ahout t he
,iuiiiatorisf plasuuiii l'uhiii'. (rim rudirar d in' 4iiitu ine.iaourpment...
in !it next tictioni we ira-neii i 4i rnpte inod..) -ii retraction oin

ýIio Vertir 1% .. 1 '? n I ¶ ihp



We model the bubble N-all as on extended sloping interface
between the backgound plasma and the bubble depletion where
the background refractivt index is n and the refractive index
inside the bubble toen - A~n. Let a ray at frequency f be incident
on the wall) at angle Yi with respect to the interface an shown in
Fiji .1a We roprreent the angular deviation of the ray front its
inittul direction by .6 which is given by elementary optica'

where f, is the background plasmal firequency and 4.141N is the
tractional change in eles~tron density scrota the interface. The
direction of the deviation 4 ixsuch that, if the ray is inciditnt on the
interface from a region of higher refractive index (depleted region)
the ray is bent toward the interface while the opposite is true for
incidence from a region of lower reftective index.

The separation between two rays of different frequency at a
vertical distance t from the point of refraction on the interface is
given by:

AN _L1 cot a (2)

If we Io~iqme that the bubble wells are field Aligned with large
isorth-Aouth extent and move with a constant west to *&As velocity
Yimot. then the time shift riseci between sintilar faides will be

11 Assuming a barlkground plasma frequency of 13 MHz, a
height of refraction z- 3Sb kin and west to vast velocity v- 100
ni,4, then ror transmission at frequencies of 1.5 GHz and 4.0

G~IN we have-

ir 150 1,AiO cot ii 3

Since the propagation path isalmost vertical and approximately in
Ihe main~etic meridian plane, is may he taken as the approximate
tilt ol the wall) witt, respect to vertical. Theiaverage magnitusleof

Iis ippritximately .1 ,e.k.ds and since the mean fractional change
in electron density must be tietween 0 and I. the average tilt of the
wall., reiponsible fur our observations must be in the rings;

0 !527* 4)

Itocently. Tiunuda and Livingston 1181) reported from coordi.
nuitod radar atid in.stitu measurements that all major bubbles
oherved were ,it least 9O'i' depleted. If we tkak this value then.
bawed n nour ,.bservatitons, .in average tilt would be ust24'. The
nmaximumn ihiti obiervel vis about I second which is possible if the
refricting portion aftho wall is within 8 X' of vertical. Wit note that
4thtooth equation 111 was derived for an abrupt interface, it is also
I rue (or a gradual change in refractive index since Snellas Law
holds foir bcth situationsm.

Si far we have 4hown that rerrAction ait A bubble wall can
Pnubice time shiitsofthe isame magnitude as thosei observed in this
--Npeirmmnt Neot w.e cinsider the sign of the shift. In Figure 3b
inti le. we Ahiw the two pnossble cunfiicurations of the wall which

I w.11 reiult in a high frequency ray precedinga lower frequency ray.
aisuminiz.i weqt to rami velocity. Note t hat the two configurations
rep)resetnt refrrisctiit 'in the eust wall olf plasma bubble A similar
picture can he drawn for the case corresponding tr thie west wall of
the oiiiible and in thisi-tm. the liwor frvquency r- v wi~l precede the
higth frequency ray 1 For west to east drift velp -.ty, Thus, whether

!em i iso incitiptit un the biihbie wall from iidte*.r outside of the
urintit. as long 14tilie ingle. a ii not tot, lArge, we observe the

flijcoiaauun- ) it lie highe~r freuslency firat when the r-sve are' Pepa.

`i.)(v "'traction in the .mast wall and vice versa whom the rays
,it. 'iptiriteil W. rvl'r.%ctiti it1 the west wal) In itir daia, the itinte

,.itund t., (it. t i rim ._'.7 tomts Ti iresoc ii hurt
rt'inli ditpiaceimtnt ii 12~ kinto i 42 km fnr the acintiliithon produc.

te'Pii tvil ini Figuret iwith i. 2 i thi.,wuld Ilirrespuncito)ii 1coher-

4-i1i ..miC., -%entii dt Inc bubible will in the ranw'

writm Ii 14 kin -h,
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This idealized model explains the shift observed alt the first and
last few minutes of a scintillation patch. however the iihift ia found
to persist throughout the patch which can% last for over an hour. It
we co~nsider a typical "real life" bubble as model led by Tsunoda and

Livingston 11981) from radar and in situ mesasurements. ituisclear

west wall of the depletion. The"e wedges are often found to tilt to
the west, so a nearly vertical rmy may pam ina and out of the
depleted region several times undergoing refraction each time.
Thus, refraction on the boundaries of plasma depletions can also
explain the sniift observed In the middle of a patch although we
cannot predict the sign of the displacement.

From a sllightly different viewpoint, we have studed the shifts
observed in the middle of the scintillation patch by coasodarlng the
simple deterministic model used by Wernik at al. (ION8). Computa.
tions based on this model have revealed the Importance of steep.
vertically extended liortiontal gradients, which are known to be
preenit inside the bubbles during their early development, in
producing enhanced Gl~s scintillstion levels. We have taken a
portion of the in situ profile shown in Figuire 2 of Wernik et al.
.19801i which corresponds to the segment between 2 and 5 km from
the bubble center, And contains four distinct irregularities with
sharp gradients. The pa roboticequation has been solved forsAwave
propagating through a phase changing screen with phasee varia.
tion proportional to the electron content fluctuations given by the
chosen segment of In situ data, In Figure 4& the amplitude patterns
at a distance of 350 km from the screen for Labnd and C-bend
iagnals respectively. A characteristic patturn cnsuseid by the dif.
fraction on the sahrp edges of the two outermost irregularities (At
.approximately 3.7 . and 4.6 kim from the center of the bubblel is
evident. Similar patterns have been observed in the Ascension
Island scintillation data; in swnde casee. a distinct diffraction past.
torn is seen several times an suiccesion within onlys a fw minutes.

The crosascorrelataon between the amplitude at the two frequon.
civs was computed separatesly for the sections between 2 And 3.6 kmn
and 3 6 and 5.25 km from the center of the bubble and is shown in
Figure 4b. In one case the traeecorrieltlon maximum is at - 40 mn
and in the other it Is at - 20 mn. These displacements corresponid toLi time shafts of - .4 and - 2 seconds if the dlIriat~ing structure
moves with ai velocity of 100 mis.

Conclusaons

a. In this note, we have presented equatorial ionospheric scintilla-
tion data observed at L-band i154 1.5 SGUlI and C-band (39451
Mt~zi along a near vertical propagation path in the magnetic

a ~meridian plami. which showed time shafts of up to one seconi
between simnilar fades of the two oignals. Simple model compute.
Lions have indicated that these timeo shifts may be caused by
4yntema tic propaigauaon *11ects such aisrefraction in a medium with
structures thait are consistent with the vertically extended plasms
bubbles I ndeed, the sign of the observed time shift and itsduet ion
during the first and the last row minutes of a scintillastlon patch

6 ~have further enabled us to estimate tr'at the walls of the plasma
bubble nay have coherent vertlcs. dlnsensa',s of a few Lens of
kilometers

This preliminary study afthe time shift aspect olthe equatorial
GHz scantillution phenomenon has reconfirmed the close reotaion.
ship lwiweer, vquatoriaal plasma bubbles and (;Hs scintillation.
More importaintlY it indicates thiat systematic propagation effects
in addition I, r~andoim sac~tterang play important roles in producing
the obwarved -cintillating ýiirnsl sagnature.
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